艾丽游戏ing

红外光谱仪的实际应用 红外光谱仪的实际应用有哪些

艾丽游戏ing 1

红外光谱的应用

红外光谱最重要的应用是有机化合物的结构鉴定。

红外光谱仪的实际应用 红外光谱仪的实际应用有哪些红外光谱仪的实际应用 红外光谱仪的实际应用有哪些


红外光谱简介:

19世纪初科研人员证实了红外光的存在,二十世纪初进一步了解到不同官能团具有不同的红外吸收频率。1950年研究出自动记录式红外分光光度计。1970年出现了傅立叶变换型红外光谱仪。日前,红外测定技术如全反射红外、显微红外、光声光谱以及色谱-红外联用等也不断发展和完善,推动了红外光谱法在各个领域中的广泛应用。

作为一种分子振动-转动光谱,红外光谱最重要的应用是有机化合物的结构鉴定。通过对比谱图中各个吸收峰的解析,可以获取分析样品中官能团、顺反异构、取代基位置、氢键结合以及络合物的形成等结构信息。

与标准谱图比较,可以进一步的确定化合物的结构;近年来红外光谱的定量分析应用也有不少报道,尤其是近红外、远红外区的研究报告在增加。如近红外区用于含有与C、N、O等原子相连基团化合物的定量;远红外区用于无机化合物研究等。

任何气态、液态、固态样品均可进行红外光谱测定,这是其它仪器分析方法难以做到的。由于每种化合物均有红外吸收,尤其是有机化合物的红外光谱能提供丰富的结构信息,因此红外光谱是目前有机化合物结构解析的重要手段之一。

红外光谱的应用

红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。

红外光谱主要有哪些方面的应用

红外光谱主要有一下方面的应用:

表面化学研究中的应用,继续不断地开发表面与薄膜的原位和实时红外分析技术。根据报道已有一种适用于原位和同时红外分析的FT-IR扩散反射室。

在石油化学研究中的应用傅立叶变换红外光谱仪在石油化学中的应用是一个十分广泛的领域,如在重油的组成、性质与加工方面,应用IR表面自硅胶色谱得到的胶质和沥青质。

红外光谱仪在润滑油及其应用方面的进展体现在用于鉴别未知油品和标定润滑油的经典物理性质如粘度、总酸值、总碱值,被纳入以设备状态监测为目的的油液分析计划,用于表征在用油液的降解和污染程度,油润滑 表面摩擦化学过程及产物的原位监测与表征。

在催化化学研究中的应用扩散反射红外光谱傅立叶变换光谱的应用报道特别突出其次是IRASDRIFTS用于监控催化剂表面吸附化合物的分解动力学。IRAS的典型应用实例包括研究CO在Pd催化剂表面的氧化反应动力学。以及研究NOCO在Pd和Pd-SiO2表面的共吸附现象。

在半导体和超导材料等方面的应用。在此方面的应用主要有,分析铀原子与CO和CO2,反应产物的基体红外光谱,研究了铀,钍的远红外性质。分析C60填料笼形包含物的红外和拉曼光谱。用反射傅立叶变换红外显微光谱法测定有机富油页岩中海藻化石。

红外光谱原理及应用

原理:红外光谱是一种分析化学技术,它是利用物质分子吸收红外辐射所产生的振动和转动能级跃迁以及其带来的波长变化进行物质分析和鉴定的。

应用:红外光谱多用于高分子材料的表征与分析,如塑料、涂层、纤维、填料等。同时,在材料设计、催化反应、生物医学、环境监测等领域也有广泛应用,如在药物制剂质量控制中,可以通过FTIR检测样品的成分、含量、纯度等。因此,FTIR在材料科学、化学、生物医学等领域都有着广泛的应用。

拓展:FTIR,即傅里叶变换红外光谱(Fourier Transform infrared spectroscopy),是红外光谱的一种常见分析技术。FTIR在化学合成、聚合反应中材料结构特征的表征,同时还能够检测材料的污染、氧化过程以及对其进行质量控制等。FTIR的原理是将样品加入到一个光路中,然后通过光源和光谱仪来发送和接收红外光信号。每个物质都有其一特定的光谱指纹,因此可以通过与库中已知的光谱进行比较,从而准确地鉴定出材料的成分。

红外光谱仪的用途是什么

红外光谱仪可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。可用于不同种类高分子材料的鉴别研究等。

傅里叶红外光谱仪的用处

红外光谱图是用来推断化合物结构的,物质分析所得的红外光谱图反映出物质所含的官能团的种类以及其所处的化学环境。

如果你知道混合物的大致成分,可以利用紫外分光光度法或者高效液相色谱法来确定混合物中各成分的含量,想要确定元素的种类则要借助质谱分析。

通过对特征谱和指纹区的分析可以确定化合物的结构,但是如果是混合物,那么所得的谱线就会受到不同物质之间光谱性质的差别而发生红移或蓝移,导致无法确定物质的结构,所以红外光谱一般不用于测定混合物。

拓展资料:

红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。

根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。

参考资料: