什么是数据分析 有什么作用?
数据分析(Data Analysis) 数据分析概念
验证性数据分析 验证性数据分析方法
数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
数据分析与数据挖掘密切相关,但数据挖掘往往倾向于关注较大型的数据集,较少侧重于推理,且常常采用的是最初为另外一种不同目的而采集的数据。 数据分析的目的与意义
数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。
在实用中,数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如J.开普勒通过分析行星角位置的观测数据,找出了行星运动规律。又如,一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划。因此数据分析有极广泛的应用范围。 数据分析的功能
数据分析主要包含下面几个功能:
1. 简单数学运算(Simple Math)
2. 统计(Statistics)
3. 快速傅里叶变换(FFT)
4. 平滑和滤波(Smoothing and Filtering)
5. 基线和峰值分析(Baseline and Peak Analysis)
数据分析的类型
在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
探索性数据分析:是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国著名统计学家约翰·图基(John Tukey)命名。
定性数据分析:又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析。
数据分析步骤
数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
1、探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
3、推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
数据分析过程实施
数据分析过程的主要活动由识别信息需求、收集数据、分析数据、评价并改进数据分析的有效性组成。
一、识别信息需求
识别信息需求是确保数据分析过程有效性的首要条件,可以为收集数据、分析数据提供清晰的目标。识别信息需求是管理者的职责管理者应根据决策和过程控制的需求,提出对信息的需求。就过程控制而言,管理者应识别需求要利用那些信息支持评审过程输入、过程输出、资源配置的合理性、过程活动的优化方案和过程异常变异的发现。 二、收集数据
有目的的收集数据,是确保数据分析过程有效的基础。组织需要对收集数据的内容、渠道、方法进行策划。策划时应考虑:
① 将识别的需求转化为具体的要求,如评价供方时,需要收集的数据可能包括其过程能力、测量系统不确定度等相关数据;
② 明确由谁在何时何处,通过何种渠道和方法收集数据;
③ 记录表应便于使用;
④ 采取有效措施,防止数据丢失和虚假数据对系统的干扰。
三、分析数据
分析数据是将收集的数据通过加工、整理和分析、使其转化为信息,通常用方法有:
老七种工具,即排列图、因果图、分层法、调查表、散步图、直方图、控制图;
新七种工具,即关联图、系统图、矩阵图、KJ法、计划评审技术、PDPC法、矩阵数据图;
四、数据分析过程的改进
数据分析是质量管理体系的基础。组织的管理者应在适当时,通过对以下问题的分析,评估其有效性:
① 提供决策的信息是否充分、可信,是否存在因信息不足、失准、滞后而导致决策失误的问题;
② 信息对持续改进质量管理体系、过程、产品所发挥的作用是否与期望值一致,是否在产品实现过程中有效运用数据分析;
③ 收集数据的目的是否明确,收集的数据是否真实和充分,信息渠道是否畅通;
④ 数据分析方法是否合理,是否将风险控制在可接受的范围;
⑤ 数据分析所需资源是否得到保障。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
数据分析在我们日常经营分析工作中主要有三大作用: 1,现状分析 简单来说就是告诉你过去发生了什么.具体体现在: 第一,告诉你企业现阶段的整体运营情况,通过各个经营指标完成情况来衡量,以说明企业整体运营是好了还是坏了?好的程度如何?坏的程度又到哪里? 第二,告诉你企业各个业务发展及构成情况,让你了解企业各业务发展及变动情况,对企业运营情况有更深入的了解. 现状分析一般通过日常通报来完成此项工作,如日报,周报,月报等日常通报形式.2,原因分析 简单来说就是告诉你为什么发生了. 经过第一阶段的现状分析,对企业的运营情况有了基本了解,但不知道运营情况具体好在哪里?差在哪里?是什么原因引起的?这时就需要开展原因分析,以进一步确定业务变动的具体原因.如2012年2月运营收入环比2012年1月运营收入下降5%,是什么原因导致的呢?是各个业务收入都出现下降?还是个别业务收入下降引起的?是各个地区业务收入都出现下降?还是个别地区业务收入下降引起的?这就需要我们开展原因分析,进一步确定收入下降的具体原因,以便运营策略做出调整与优化. 原因分析一般通过专题分析开展来完成此项工作,根据企业运营情况选择开展.3,预测分析 简单来说就是告诉你将来发生什么. 在了解企业运营现状后,有时还需要对企业未来发展趋势作出预测,为制定企业运营目标及策略提供有效的参考决策依据,以保证企业的可持续健康发展. 预测分析一般通过专题分析开展来完成此项工作,预测分析一般在制定企业季度,年度等计划时开展,开展频率没有现状分析及原因分析频率高.
数据分析:数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥其数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
数据分析可帮助人们作出判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程 一、数据分析功能:
1. 简单数学运算
2. 统计
3. 快速傅里叶变换
4. 平滑和滤波
5. 基线和峰值分析
二、数据分析步骤
1、探索性数据分析
2、模型选定分析
3、推断分析
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析 将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析的目的是把隐藏在一大批看天来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。
数据分析是基于商业目的,有目的的进行收集、整理、加工和分析数据,提炼有价信息的一个过程。
其过程概括起来主要包括:
明确分析目的与框架;
数据收集;
数据处理;
数据分析,
数据展现和撰写报告。
数据分析案例一:
茫茫人海中,通过观察、跟踪、记录等手段找到生命中最想爱的那个人,进而根据对方的喜好,成功的展示了自己的优点,改进了自己的缺点,并且说服了对方的父母,承诺终身与ta为伴的一项工作。
数据分析案例二:
喜欢上一个姑娘,会搜集她的兴趣、爱好、星座、闺密、乃至三围,等等各种信息,然后想自己怎么能搭讪上、约出来,碰壁了会继续找原因、想办法,这里面都有在做数据分析操作。
数据分析是基于行业目的,有目的的进行收集、整理、加工和分析数据,提炼有价值信息的一个过程。其过程概括起来主要包括:明确分析目的与框架、数据收集、数据处理、数据分析、数据展现和攥写报告等六个阶段。
1、明确分析的目的与框架
基于对商业的理解,整理分析框架和分析思路。减少新客户的流失、优化活动效果、提高客户响应等。不同的项目对数据的要求,使用的分析手段也是不一样的。
2、数据收集
数据收集是按照确定的数据分析和框架内容,有目的的收集、整合相关数据的一个过程,是数据分析的一个基础。
3、数据处理
数据处理是指对采集到的数据进行加工、整理,以便展开数据分析,它是数据分析前必不可少的阶段。这个过程是数据分析整个过程中最占据时间的,也在一定程度上取决于数据仓库的搭建和数据质量的保证。
4、数据分析
数据分析是指通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规模,为商业提供决策参考。
5、数据展现
一般情况下,数据分析的结果都是通过图、表的方式来呈现,借助数据展现手段,能更直观的呈现出信息。
6、撰写报告
最后阶段,就是撰写数据分析报告,这是对整个数据分析成果的一个呈现。通过分析报告,把分析的目的、过程、结果记方案完成呈现出来,以供商业目的提供参考。
想要了解更多关于数据分析的问题可以到CDA认证中心咨询一下,CDA是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称,具体指在互联网、金融、咨询、电信、零售、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。
数据分析有什么价值
1.何为数据分析
数据分析的目的是把隐藏在一大批看似杂乱无章的数据背后的信息集中和提炼出来,总结出所研究对象的内在规律。在实际工作中,数据分析能够帮助管理者进行判断和决策,以便采取适当策略与行动。例如,企业的高层希望通过市场分析和研究,把握当前产品的市场动向,从而制订合理的产品研发和销售计划,这就必须依赖数据分析才能完成。
在统计学领域,将数据分析划分为描述性数据分析、探索性数据分析以及验证性数据分析。其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于验证已有假设的真伪证明。
2.数据分析的作用
数据分析就是把隐藏在一大批看似杂乱无章的数据背后的信息集中和提炼出来,总结出所研究对象的内在规律,帮助管理者进行有效的判断和决策。我觉得它就好比是从矿山中挖掘出金子。要达到这些目的,我们在日常工作中该做些什么呢?比如日常通报、专题分析等,这些都是数据分析具体工作的体现。而什么时候做通报,什么时候该开展专题分析,则需要我们根据实际情况做出选择。很多人经常做这些工作,但不知为何而做,只是为做而做,没有想清楚做的目的,所以常常不得要领被数据所湮没。只有当你对数据分析目的及工作有了足够清晰的认识,开展数据分析时才会如鱼得水,游刃有余。数据分析在企业的日常经营分析中主要有三大作用,如图所示:
3.数据分析的方法和步骤
数据分析不仅是基于数据科学,IT技术,更多是基于业务,良好的业务背景知识是进行有效数据分析的重要要素。
让分析围绕业务开展,分析服务于业务是贯穿的主线。
借助工具未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
你好,一探讨需求
在开始分析数据或深入研究分析技术之前,与团队里的所有小伙伴一起坐下来,确定主要活动或战略目标是很关键的,需要从根本上了解哪些类型最有利于发展,或哪些数据对发展的前景最有帮助。【摘要】
如何有效的进行数据分析【提问】
现在大数据的流行不再限于IT或DT行业的人知道,但很多其他行业的工作人员对于数据分析并不是很清楚,就算有些人在自己的工作岗位上开始疲倦、厌倦、烦躁,想转行到数据分析行业,但对数据分析行业的所知甚少又制约了自己的计划和打算。现在就针对数据分析的实际情况总结了六问六答,希望能够给大家带来帮助。
1、数据分析到底是什么?
数据分析就是指用一定的统计模型方法和分析模型以及工具对数据进行分析,使得能够从这些数据中得到有价值的商业信息以及数据规律,并通过这些规律改变企业的未来发展方向。
2、为什么要做数据分析?
现在的世界是数据分析的世界,很多的信息都可以被转化成数据,数据也可以转化成信息。很多企业积累了很多的原始数据,我们面对的不断增长的数据可以对商业的发展趋势以及市场分析进行预测,不管是什么行业,为了发展,都离不开数据分析。
3、数据分析的作用是什么?
通过数据分析,我们可以进行现状的分析,能够得出企业最近的发展情况以及企业存在的问题。同时还能通过数据分析了解企业自身存在的问题的原因。最后也是最重要的就是数据分析可以对企业未来的发展做出预测,制定科学的目标及计划。从而让企业朝着更好的方向发展。
4、数据分析到底难不难?
数据分析需要学习很多的知识,比如编程工具的Python以及r语言,还要学习统计学、数据库知识、sql、Excel等等。看到这些想必大家已经开始打退堂鼓了,其实大可不必,这些入门还是很容易的,难的就是需要长时间坚持研究数据分析,通过经验的积累以及大量的实践才能够从小白变成老鸟。
5、数据分析有哪些分析类型?
数据分析其实没有什么实质性的分类,不过,一般来说,数据分析中有三类,一是描述性数据分析,也是数据分析的基础,初级数据分析。比如我们经常听到的同比、环比、平均、频率这些词就是数据分析里面的。二是验证性数据分析,同样也属于高级数据分析。三是探索性数据分析,也是高级数据分析,侧重于发现数据中的新特征、新规律,例如相关分析、因子分析、回归分析等。
6、数据分析有几个步骤?
(1)明确分析目的和思路。
(2)数据收集。
(3)数据处理,对收集到的数据进行整理加工,保留有价值有意义的数据。处理肮脏数据,净化数据环境。
(4)数据分析,用适当的工具和分析方法,对处理过的数据进行分析,提取有价值的信息,从而形成有效的结论。
(5)数据展现,用图表说话,制作专业的商务图表,更加高效、更加直接、更加生动的表达观点。
以上的内容就是对于数据分析的实际情况的详细解答了,大家在了解数据分析的时候可以参考这篇文章,希望这篇文章能够个大家带来帮助。