高中数学必修4 三角函数初学问题?
题目必须做,但拿到所谓的“难题”你首先需要找到你在哪一步出问题,是基本算式技巧还是理论不够透彻,明白自己的瓶颈在哪再有意识解决,也就是要随时反思自己的知识体系。算了.还是这里讲吧.
高中数学必修四 高中数学必修四是高几学的
高中数学必修四 高中数学必修四是高几学的
首先.画数轴.设所求角为A.x为角在X轴上坐标.y为Y轴上坐标.r为半径(因为是半径.故而r总大于0).
当A位于第二象限内时.即x0.r>0.因为sinA=y/r.cosA=x/r.所以很容易得出sinA>0.cosA,6,a 是第二象限角, -1 sin(cosa)<0 ,cos(sina)>0
故原式的符号<0,2,因为a是第二象限角,cosa小于0大于-1所以sin(cosa)是小于0的
sina是大于0 的且小于1,所以sin2α=2sinαcosαcos(sina)是大于0的
所以sin(cosa)/cos(sina)是小于0 的是负的,2,a在第二项限 cos a 在(-1,0)
(-1,0)在第四象限 所以sin(cos a)为负
同理 cos(sin a)为象限角 为正
所以sin(cos a)/cos(sin a)为负,1,a 是第二象限角,在坐标轴上画单位圆,在二象限画角a,作出其正弦线,余弦线,有图可知,-1 而sin(cosa)中,因为-1 同理,在cos(sina)中,因为0 0,
ncooler 幼苗
共回答了21个问题 采纳率:85.7% 向TA提问
- 已知得到:cos a为负数,并且cos a为(-1,0)。令cos a= -x, 则 x为象限 所以 sin(-x)=-sin x 小于 0,即 sin(cos a)小于0,同理分母中sin a为0~1之间,也是属于象限的角度,所以cos(sin a)大于0,于是 + - 得负。 0,高中数学必修4 三角函数初学问题
如果a 是第二象限角,试判断sin(cos a)/cos(sin a)的符号
恩.请给解释详细些好吧
那个..通俗点..行么?
高中数学教材用哪个版本
人教版高中数学教材共有四册,分别是《数学必适合不等式-2π≤a<4π的元素修一》、《数学必修二》、《数学必修三》和《数学必修四》。这些教材包括了高中数学的主要知识点,包括代数、几何、概率与统计等方面的内容。
其中,《数学必修一》主要是函数与方程,包括函数的性质、初等函数、三角函数和数列等内容;《数学必修二》主要是立体几何初步,包括平面几何、立体几何、空间向量和解析几何等内容;《数学必修三》主要是算法初步、统计和概率,包括程序框图、算法案例、统计和概率等内容;《数学必修四》主要是三角函数、平面向量和解斜三角形等内容。
除了以上四本必修教材外,人教版还有多本选修教材,包括《数学选修1-1》、《数学选修1-2》、《数学选修4-1》、《数学选修4-2》等。这些选修教材主要是为了满足不同教法的原因:初中数学内容少,知识难度不大,教学要求较低,因而教学进度较慢,对于某些重点、难点,教师可以有充裕的时间反复讲解、多次演练,来弥补不足。但是进入高中后,数学教材内涵丰富,教学要求不断提高,教学进度相应加快,知识的重点和难点也不可能象初中那样通过反复强调来排难释疑,且高中教学往往通过设导、设问、设陷、设变,启发,开拓思路,然后由学生自己思考、去解答,比较注意知识的发生过程,倾重对学生思想方法的渗透和思维品质的培养。这使得刚入高中的部分学生不适应教学方法,听课时存在思维障碍,跟不上教师的思维,从而产生学习障碍,影响数学的学习。学生的需求,拓展学生的数学知识面,提高数学应用能力。
总之,高中数学教材使用的是人教版,该版本教材内容详实、知识点全面,适合大多数学生的学习需求。同时,人教版也是大多数学校所使用的教材,方便教师进行教学和学生学习。
必修四数学第二章知识点
3、函数的最值在实际问题中的应用必修四数学第二章知识点1 1、平面向量基本概念
有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;
向量的模:有向线段AB的长度叫做向量的模,记作|AB|;
零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);
相等向量:长度相等且方向相同的向量叫做相等向量;
平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;
单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。
相反向量:与a长度相等,方向相反的向量,叫做a的相反向量,—(—a)=a,零向量的相反向量仍然是零向量。
2、平面向量运算
加法与减法的代数运算:
(1)若a=(x1,y1),b=(x2,y2)则a b=(x1+x2,y1+y2)。
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+ = +(交换律);+(+c)=(+)+c(结合律);
(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0。
两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且一个实数,使得b= 。
(2)若=(),b=()则‖b 。
3、平面向量基本定理
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得= e1+ e2。
4、平面向量有关推论
三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。
若O是三角形ABC的外心,点M满足OA+OB+OC=OM,则M是三角形ABC的垂心。
若O和三角形ABC共面,且满足OA+OB+OC=0,则O是三角形ABC的重心。
三点共线:三点A,B,C共线推出OA=μOB+aOC(μ+a=1)
必修四数学第二章知识点2
一、两个定理
1、共线向量定理:
两向量共线(平行)等价于两个向量满足数乘关系(与实数相乘的向量不是零向量),且数乘系数。用坐标形式表示就是两向量共线则两向量坐标的“内积等于外积”。此定理可以用来证向量平行或者使用向两平行的条件。此定理的延伸是三点共线!三点共线可以向两个向量的等式转化:1.三个点中任意找两组点构成的两个向量共线,满足数乘关系;2.以同一个点为始点、三个点为终点构造三个向量,其中一个可由另外两个线性表示,且系数和为1。
2、平面向量基本定理:
平面内两个不共线的向量可以线性表示任何一个向量,且系数。这两个不共线的向量构成一组基底,这两个向量叫基向量。此定理的作用有两个:1.可以统一题目中向量的形式;2.可以利用系数的性求向量的系数(固定的算法模式)。
二、三种形式
平面向量有三种形式,字母形式、几何形式、坐标形式。字母形式要注意带箭头,多考虑几何形式画图解题,特别是能得到特殊的三角形和四边形的情况,向量的坐标和点的坐标不要混淆,向量的坐标是其终点坐标减始点坐标,特殊情况下,若始点在原点,则向量的坐标就是终点坐标。
选择合适的向量形式解决问题是解题的一个关键,优先考虑用几何形式画图做,然后是坐标形式,考虑字母形式的变形运算。
三、四种运算
加、减、数乘、数量积。前三种运算是线性运算,结果是向量(0乘以任何向量结果都是零向量,零向量乘以任何实数都是零向量);数量积不是线性运算,结果是实数(零向量乘以任何向量都是0)。线性运算符合所有的实数运算律,数量积不符合消去律和结合律。
向量运算也有三种形式:字母形式、几何形式和坐标形式。
加减法的几何意义是平行四边形和三角形法则,数乘的几何意义是长度的伸缩和方向的共线,数量积的几何意义是一个向量的模乘以另一个向量在个向量方向上的射影的数量。向量的夹角用尖括号表示,是两向量始点重合或者终点重合时形成的角,首尾相接形成的角为向量夹角的补角。射影数量有两种求法:1.向量的模乘以夹角余弦;2.两向量数量积除以另一向量的模。
加减法的坐标形式是横纵坐标分别加减,数乘的坐标形式是实数乘以横、纵坐标,数量积的坐标形式是横坐标的乘积加纵坐标的乘积。
求长度、求夹角、证垂直、证平行、向量和积的模与模的和积的关系。前三个应用是数量积的运算性质,证平行的数乘运算性质,零向量不能说和哪个向量方向相同或相反,规定零向量和任意向量都平行且都垂直;一个向量乘以自己再开方就是长度;两个向量数量积除以模的乘积就是夹角的余弦;两个向量满足数乘关系则必定共线(平行)。一个向量除以自己的模得到和自己同方向的单位向量,加符号是反方向的单位向量
数学函数的值域与最值知识点
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.
(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的`角度不同,因而答题的方式就有所相异.
如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.
必修四数学第二章知识点3
1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。
3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。
4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。
5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。
向量的计算
1.加法
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2.减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
加减变换律:a+(-b)=a-b
3.数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π
向量的数量积的运算律
a·b=b·a(交换律)
(λa)·b=λ(a·b)(关于数乘法的结合律)
(a+b)·c=a·c+b·c(分配律)
向量的数量积的性质
a·a=数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题不要放过。|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
高中学好数学的方法是什么
数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
数学函数的奇偶性知识点
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式。
高中数学必修四知识求解答!
口到:就是在老师的指导下,主动回答问题或参加讨论。∵α为锐角,cosα=3/5
实数与向量的积:实数与向量的积是一个向量。∴sinα=4/5
∵β是第四象限角,cosβ=4/5
∴sinβ=-3/5
∴sin(α+β)=sinαcosβ+cosαsinβ
=(4/5)(4/5)+(3/5)(-3/5)
=7/25
高中数学必修四146页7题求详解
注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。已知cos(α+β)=1/5加减法的字母形式注意首尾相接和始点重合。数量积的字母形式公式很重要,要能熟练灵活的使用。,cos(α-β)=3/5,求tanαtanβ的值。
解法如下:
把两个已知等式分别相加和相减,再利用和化积即可。
cos(α+β)+cos(α-β)=2cosαcosβ=4/5……①
cos(α+β)-cos(α-β)=-2sinαsinβ=-2/5……②
把②除以①就可以得到tanαtanβ=1/2
你的教材是什么版本?人教版?苏教版?北师大版?
高中数学必修四内容
S={a|a=2kπ}1.
sin2y=2sinycosy
f(sin2y)=根号(1-sin2y)=根号[(siny)^2-2sinycosy+(cosy)^2]=|siny-cosy|=siny-cosy(因为y属于(4分之3π,π),此时siny>0,cosy<0,且|siny|<|cosy|)
同理可推出f(-sin2y)=|siny+cosy|=-siny-cosy
因此f(sin2y)+f(-sin2y)=-2cosy
2.f(x)=根号3sin k(1)| |=| |·| |;分之πx有三角函数的性质可知这个函数的最小正周期是2π/(π/k)=2k
其相邻的一个值点与最小值点分别为(k/2,根3),(-k/2,-根3)
其在圆x^2+y^2=k上,将其中一点坐标代入此方程得k^2/4+3=k
整理得k^2-4k+3=0
解得k=3或1
因此,f(x)的最小正周期是6或2
高中数学题(必修四)
写出与下列各角终边相同的角的S,并且把S中适合不等式-2π≤β<4π的元素β写sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。出来。
(1)π/4
S={a|a=2kπ+π/4}
-7π/4
π/4
9π/4
S={a|a=2kπ-2π/3}
-2π/3
10π/3
(3)12π/5
S={a|a=2kπ+2π/5}
-8π/5
2π/5
12π/5
(4)0
-2π(2)-2π/3
2π
圆心角a
54°=3π/10
半径r
半径为15
cm
弧长l=半径r圆心角a=(3π/10)15=9π/2
扇形的周长=2r+l=30+9π/2
面积S=1/2lr=135π/4
高一数学必修四诱导公式
tan(3π/2-α)=cotα诱导公式是高中数学学习的常用公式,数学必修四需要记忆的诱导公式有哪些呢?下面是我为大家整理的 高一数学 必修四诱导公式,希望对大家有所帮助!
高一数学必修四诱导公式大全
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律 总结 ※
上面这些诱导公式可以概括为:
对于π/2k ±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
#各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部透彻领悟所学知识:高中数学的理论性、抽象性强,这就需要学生在知识的理解上下大功夫,不仅要弄清数学概念的实质,还要弄清概念的背景及其与其它概念的联系。例如初三学生都会解一元二次方程,我曾在高一新生中做过这种调查:为什么一元二次方程在△≥0时有根?答对率不到15%,说明了什么?学生对一元二次方程这个概念理解不透彻,相关知识缺乏联系。是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三内切,四余弦
#还有一种按照函数类型分象限定正负:
函数类型 象限 第二象限 第三象限 第四象限
正弦 ...........+............+............—............—........
余弦 ...........+............—............—............+........
正切 ...........+............—............+............—........
余切 ...........+............—............+............—........
同角三角函数基本关系
同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和公式
两角和与的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
二倍角公式
二倍角的正弦、余弦和正切公式(升幂缩角公式)
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
半角公式
半角的正弦、余弦和正切公式(降幂扩角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
高中数学必修4三角函数.已知cos4=4分之1,求sin4、tan4??
cos(α+β)=cosαcosβ-sinαsinβcos4等于1/4,那平方就是1/16,又SINa的平方与COSa的平方和为一.那sin4的平方就是15/16,又cos4为第三象限角,故sin4等于负的四分之根号十五,tan4就是两个一此,懂了吗?用手机编辑累啊!,4,公是,2,sin4=4分之根号15
tan4=根号15,1,tan(π-α)=-tanα