近红外光谱分析仪和原子吸收光谱仪、原子吸收分光光度计的区别主要在哪里?
原子吸收光谱仪、原子吸收分光光度计 这两个是一种东西,都是利用原子的特征谱线吸收以及比尔定律来进行定量和定性分析,主要测量金属含量
近红外光谱分析仪(手持近红外光谱分析仪)
近红外光谱,利用分子内振动的波长特性来进行定性和半定量分析,一般用于测量有机物
近红外光谱分析仪的组成
近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换、声光可调滤光器和阵列检测五种类型。
滤光片型主要作专用分析仪器,如粮食水分测定仪。由于滤光片数量有限,很难分析复杂体系的样品。光栅扫描式具有较高的信噪比和分辨率。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太适合于在线分析。傅立叶变换近红外光谱仪是具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动性部件,且需要较严格的工作环境。声光可调滤光器是采用双折射晶体,通过改变射频频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快。但目前这类仪器的分辨率相对较低,价格也较高。
随着阵列检测器件生产技术的日趋成熟,采用固定光路、光栅分光、阵列检测器构成的NIR仪器,以其性能稳定、扫描速度快、分辨率高、信噪比高以及性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的阵列检测器中,常用的有电荷耦合器件(CCD)和二极管阵列(PDA)两种类型,其中Si基CCD多用于近红外短波区域的光谱仪,InGaAs基PDA检测器则用于长波近红外区域。
近红外光谱仪器的主要性能指标
在近红外光谱仪器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台近红外光谱仪器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。
1、仪器的波长范围
对任何一台特定的近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域。
2、光谱的分辨率
光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如异构体的分析,一般要求仪器的分辨率好于1nm。[1]
3、波长准确性
光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。
4、波长重现性
波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。
5、吸光度准确性
吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。
6、吸光度重现性
吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。
7、吸光度噪音
吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。
8、吸光度范围
吸光度范围也称光谱仪的动态范围,是指仪器测定可用的吸光度与能检测到的吸光度之比。吸光度范围越大,可用于检测样品的线性范围也越大。
9、基线稳定性
基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。基线的稳定性对我们获得稳定的光谱有直接的影响。
10、杂散光
杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。杂散光对仪器的噪音、基线及光谱的稳定性均有影响。一般要求杂散光小于透过率的0.1%。
11、扫描速度
扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。不同设计方式的仪器完成1次扫描所需的时间有很大的差别。例如,电荷耦合器件多通道近红外光谱仪器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。
12、数据采样间隔
采样间隔是指连续记录的两个光谱信号间的波长差。很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。
13、测样方式
测样方式在此指仪器可提供的样品光谱采集形式。有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。
14、软件功能
软件是现代近红外光谱仪器的重要组成部分。软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。
什么是红外光谱分析仪?
近红外光谱仪是一种室内光谱分析仪器,采用光栅扫描法获取目标近红外波段的高分辨反射光谱。 成果技术专业领域:仪器仪表,化学分析 主要技术指标: 光谱范围:1000~2500nm 光谱分辨率:~5nm(可根据实际应用需求设计) 工作方式:单元红外探测器,光栅扫描;调制盘斩波调制,锁相放大器放大 积分球测量半球反射率 成果应用领域:食品行业品质分析,有机物含量非接触检测。 市场分析:该应用领域在国外已发展了35年以上,方法成熟。但由于技术含量高,国内的企业无力承担技术开发工作,因此目前的市场完全被进口产品占据。的市场特点以及目前农业在的产业利润决定了,这些需求只能由低价格的本地低端产品来满足,国外的产品只能占据极少量的高端市场。目前市场上的进口产品价格在4万美元左右,若能够提供单价在10万元币以内的产品,上述市场需求将被释放,若产品价格在6万元币,则市场容量将更大。 成果成熟程度:红外光谱分析仪的关键硬件技术包括:近红外光谱扫描单色仪设计技术、近红外光谱微弱信号检测技术、锁相放大器技术、积分球制作技术。目前成果技术拥有方的以上技术在国内均具有优势,且部分技术目前为国内独有技术。作为市场产品的专用红外光谱分析仪,除光谱仪硬件技术外,尚需相应的物理模型配套,目前成果技术拥有方由于行业关系不掌握此类技术,需要寻求技术合作。不过国内已有很多应用单位开展了相应研究,并已达到应用的成熟水平。 合作方式:由于成果技术拥有方不具备完整技术条件,建议采用合作方式较为合理;
近红外光谱仪测什么
近红外光谱主要是反映C-H、O-H、N-H、S-H等化学键的信息,因此分析范围几乎可覆盖所有的有机化合物和混合物。
近红外光(NearInfrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波,ASTM定义的近红外光谱区的波长范围为780~2526nm(12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。
红外气体分析仪的原理是什么?
多数气体分子的振动和转动光谱都在红外波段。
当入射红外辐射的频率与分子的振动转动特征频率相同时,
红外辐射就会被气体分子所吸收,引起辐射强度的衰减。
利用这种气体分子对红外辐射吸收的原理制成红外气体分析仪。
用ftir可以分析物质成分及含量吗
FTIR 傅氏转换红外线光谱分析仪(Fourier Transform infrared spectroscopy) 用于半导体制造业。FTIR乃利用红外线光谱经傅利叶转换进而分析杂质浓度的光谱分析仪器。 目的:·已发展成熟,可Routine应用者,计 有:
岛津近红外光谱分析仪怎么样?
岛津
在经营的过程中一直保持着“为了人类和地球的健康”这一愿望作为公司的经营思想,以光技术、X射线技术、图像处理技术这三大核心为基础,不断革新,不断挑战,一如既往地对科学技术发展做出贡献。特别是在2002年岛津制作所的田中耕一荣获诺贝尔化学奖,开创了公司研究人员获奖的先河。
近红外光谱仪原理
近红外光谱仪原理如下:
红外光谱原理是红外光谱是一种分子吸收光谱,利用红外光谱法对有机物进行定性和定量的检测,通过红外线光谱仪发出红外线光线,再将光线照射到待检测物体的表面,有机物因其吸收特性会吸收红外光,从而产生红外光谱图。
技术人员可根据红外光谱图找到与吸收峰相对应的化学基团数据库,对待测物质的构成和所属状态进行定性分析。
红外光谱的分类:
红外光谱可分为近红外光谱技术、远红外光谱技术和傅立叶变换红外光谱技术。近红外光谱技术的分子中存在4种不同形式的能量,分别是平动能,转运能,振动能和电子能。
在近红外光谱技术中,近红外区域产生的倍频和合频的吸收往往比中红外弱,背景十分复杂,谱峰重叠的现象十分严重,有时必须借助化学计量方法才能提供有效的信息。
远红外光谱技术是利用物体在远红外区的吸收光谱,这个区域的光源能量十分弱小,吸收谱带主要是气体分子中的纯转动跃迁和液体中重原子的伸缩振动,因此一般不在远红外光谱区进行定量分析。
傅立叶变换红外光谱技术是一种快速,无损食品分析的检测技术,主要通过与化学计量学的方法相结合,实现定性定量分析。