关于统计学,这里的p值是怎么计算出来的呢?谢谢!
这个P值一般都是软件算出的,P《0.05,就是落在了拒接域的范围,等于0.015故拒接原假设。转化为P值来判断。
p值计算公式 p值计算公式Excel
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时。
扩展资料
统计学中回归分析的主要内容为:
1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。
2、对这些关系式的可信程度进行检验。
根据题意用构成比的卡方检验就可以计算,前提是要给出理论频数,表里目前未知。
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为p不等于p0时;
=1-Φ(z0) 当被测假设H1为p大于p0时;
=Φ(z0) 当被测假设H1为p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要根据P值的大小和实际问题来解决。
扩展资料:
P值(P value)就是当原假设为真时,比所得到的样本观察结果更极端的结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要自己根据P值的大小和实际问题来解决。
参考资料来源:
P值的计算公式是
=2[1-Φ(z0)]当被测假设H1为p不等于p0时;
=1-Φ(z0)当被测假设H1为p大于p0时;
=Φ(z0)当被测假设H1为p小于p0时;
总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要根据P值的大小和实际问题来解决。
扩展资料
统计学中回归分析的主要内容为:
1、根据一组数据,确定一些变量之间的数量关系,即建立数学模型,估计未知参数。参数估计的常用方法是最小二乘法。
2、测试这些关系的可信度。
3、在许多自变量影响因变量的关系,确定哪些(或什么)是独立变量是重要的,影响的独立变量的影响并不显著,将影响显著的自变量加入模型中,并消除影响不显著的变量,通常用逐步回归,回归和向后回归等方法。
4、利用所期望的关系来预测或控制某一生产过程。回归分析的应用非常广泛,统计软件包使各种回归方法的计算非常方便。
参考资料来源:
P越小越拒绝原假设。是p(-U0
真无语,不是问怎么算的吗?给你打的那么详细累死了~你就自己用软件算吧~你都分不清哪个回答对回答错的!你以为所有软件都默认0.5呢!无语~!
看你就想能通过考试而已吧~那你就记住“越小越拒绝”,你这个在95%置信水平下拒绝!背住吧~真是的
这个P值一般都是软件算出的,手算很麻烦,P《0.05,就是落在了拒接域的范围,等于0.015故拒接原假设。本来是要算出统计量,然后查表比较,麻烦故转化为P值来判断。
根据题意用构成比的卡方检验就可以计算,前提是要给出理论频数,表里目前未知。
统计学中的P值应该怎么计算
统计学意义(p值)zt
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。
P值的计算公式是
=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;
=1-Φ(z0) 当被测假设H1为 p大于p0时;
=Φ(z0) 当被测假设H1为 p小于p0时;
其中,Φ(z0)要查表得到。
z0=(x-n*p0)/(根号下(np0(1-p0)))
最后,当P值小于某个显著参数的时候(常用0.05,标记为α,给你出题那个人,可能混淆了这两个概念)我们就可以否定假设。反之,则不能否定假设。
假设检验p值计算公式
P值的计算:一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:
左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}
右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。
若X服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。
计算出P值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:
如果α > P值,则在显著性水平α下拒绝原假设。
如果α ≤ P值,则在显著性水平α下接受原假设。
在实践中,当α = P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。
扩展资料:
假设检验理论的具体做法是:
假定某一参数的取值。
选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。
从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值。
如果0.01
如果P值>0.05,说明结果更倾向于接受假定的参数取值。
可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。
统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的a,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。
只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。
因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。
参考资料来源:
参考资料来源: