艾丽游戏ing

三角形面积公式的变式 三角形面积公式及变式

艾丽游戏ing 1

高中数学三角形面积公式 由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。 平面上三条直线或球面上三条弧线所围成的图形。 三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。 面积公式: (1)S=ah/2 (2).已知三角形三边a,b,c,则 (海伦公式)(p=(a+b+c)/2) S=√[p(p-a)(p-b)(p-c)] =(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)] (3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC (4).设三角形三边分别为a、b、c,内切圆半径为r S=(a+b+c)r/2 (5).设三角形三边分别为a、b、c,外接圆半径为R S=abc/4R (6).根据三角函数求面积: S= absinC/2 a/sinA=b/sinB=c/sinC=2R 注:其中R为外切圆半径。

三角形面积公式的变式 三角形面积公式及变式三角形面积公式的变式 三角形面积公式及变式


【摘要】

三角形的面积公式有哪些【提问】

三角形的面积

=底ⅹ高÷2

公式为:

S=1/2ah

其中:

S表示三角形的面积,

a表示三角形的底,

h表示底上的高。

和差化积:sinA-sinB=2sin[(A-B)/2]cos[(A+B)/2]

两角和公式:

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式:

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

常见的三角形按边分有等腰三角形、不等腰三角形;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

三角形面积公式

(一)

那任意两边,以其中一边为底

另一边 乘以 这两边的夹角的正弦值 就等于对应的高

根据面积公式底X高除2

可得 三角形面积=三角形任意两边之积×这两边的夹角的正弦值÷2

(二)

面积: S=ah/2

(2).已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)

S=√[p(p-a)(p-b)(p-c)]

=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

(3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC

(4).设三角形三边分别为a、b、c,内切圆半径为r

S=(a+b+c)r/2

(5).设三角形三边分别为a、b、c,外接圆半径为R

S=abc/4R

(6).根据三角函数求面积:

S= absinC/2 a/sinA=b/sinB=c/sinC=2R

注:其中R为外切圆半径。

任意三角形面积计算公式

可以利用海伦公式计算

(1)已知底和高

面积: S=ah/2

(2).已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)

S=√[p(p-a)(p-b)(p-c)]

=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]

(3).已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC

(4).设三角形三边分别为a、b、c,内切圆半径为r

S=(a+b+c)r/2

(5).设三角形三边分别为a、b、c,外接圆半径为R

S=abc/4R

(6).根据三角函数求面积:

S= absinC/2 a/sinA=b/sinB=c/sinC=2R

注:其中R为外切圆半径。