艾丽游戏ing

下列关于示波器的使用是正确的 示波器主要用于以下场合

艾丽游戏ing 1

示波器怎么用

使用方法如下:

下列关于示波器的使用是正确的 示波器主要用于以下场合下列关于示波器的使用是正确的 示波器主要用于以下场合


1、首先将示波器探头上的衰减置于“1”档并插入通道1插孔,这时候的耦合方式置于dc档,而通道选择在ch1。

2、接着将探针插入校准信号源小孔内调节垂直旋钮和水平旋钮,使屏幕显示的波形图稳定。

3、波形图在垂直方向的值乘以垂直衰减旋钮的指示数值,就是校准信号的幅度。

4、同理根据水平方向的值和水平旋钮的指示数值,得到校准信号的频率。

示波器的使用方法

示波器是一种广泛使用的电子测试设备,通常用于测量和显示电子信号的变化。示波器可以显示电压随时间变化的图像,可用于诊断电路中的问题。在测量之前,必须将示波器与被测电路正确连接。这通常涉及将电缆连接到被测电路并将其插入示波器的输入端口。

在连接示波器之后,必须选择正确的测量设置。示波器通常具有多个控件,例如尺度,触发器和扫描速度,这些控件可用于调整测量。尺度控件用于调整示波器的垂直刻度,以确保正确显示被测信号。触发器控件可用于触发示波器测量,以便在正确的时间显示信号。扫描速度控件可用于调整示波器显示信号的速度和时间尺度。

在测量期间,示波器将显示电压随时间变化的波形图。这可用于分析信号的特性,例如振幅,频率和相位。示波器还可以用于测量信号的峰峰值,平均值和有效值。使用示波器进行测量需要一定的技能和经验,因此在使用示波器之前,应该熟悉其控件和测量技术。

总之,示波器是一种非常有用的电子测试设备,可用于测量和显示电子信号的变化。使用示波器需要一定的技能和经验,但是一旦掌握了它的使用方法,就可以帮助诊断电路中的问题,并获得有关信号特性的有用信息。

示波器的使用方法?

示波器的使用方法说简单是很简单,但是要正确用好它还是要理解它:

1)示波器就等于电压表,是一个高阻抗输入的电压表,不过它不是指针、数字,是波形,如果你熟悉万用表(电压表)对此就不会陌生,你第一步就认为它是特殊的电压表就可以了(这里说的是Y轴)一切可以用电压表测量的量都可以在Y轴输入。

2)思想里应该有示波器工作的信号流程图,或者说是电路框图,这有助于我们更好地理解、使用它。

3)理解X轴,X轴扫描是示波器的核心,X轴就是时间轴,和我们教科书上的一样,X周的时基,就是我们的测量基准,有了它在波形上可以知道时间、周期、频率、相位等等,没有X轴,图象(波形)就拉不开,测不出数据。

4)至于聚焦、亮度、这是和过去的CRT电视机一样,垂直位移、水平位移这些我想各位都容易懂,我看就不要说了。

我上面讲的是着重理解,说明书你不能不读。而在使用中,多用,多看,多问,多想,很快就能使用得很好的。

但是有什么具体量的测试方法,到时候可以再来问,本人乐意回答。

亲,这边给您示波器的正确使用方法给您参考下:1.

检查示波器主机及其配件无缺漏和无损坏后,摁一下示波器左下角的开关按钮,将示波器打开。

2.

示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。

一、荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

二、 示波管和电源系统

1、电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2、辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。

3、聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4、标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

三、垂直偏转因数和水平偏转因数

1、垂直偏转因数选择(VOLTS/DIV)和微调

在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时垂直偏转因数是0.2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2、时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0.2μS。

TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

四、输入通道和输入耦合选择

1、输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2、输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中一般选择“直流”方式以便观测信号的绝对电压值。

请看如下文章:

本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。

2.1 荧光屏

荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

2.2 示波管和电源系统

1.电源(Power)

示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。

2.辉度(Intensity)

旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。

3.聚焦(Focus)

聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。

4.标尺亮度(Illuminance)

此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。

2.3 垂直偏转因数和水平偏转因数

1.垂直偏转因数选择(VOLTS/DIV)和微调

在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。

踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从 5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。

每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0. 2V/DIV。

在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。

2.时基选择(TIME/DIV)和微调

时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。

“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于2μS×(1/10)=0.2μS。

TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。

示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。

示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。

2.4 输入通道和输入耦合选择

1.输入通道选择

输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。

2.输入耦合方式

输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。

示波器分为模拟和数字的,不过现在模拟的很少有人用了吧,这里分享一个数字示波器的使用方法吧:

认识示波器,了解各旋钮、按钮的作用及调节方法,接线端子的意义,信号通道如何选择,屏幕上显示波形如何调节、校正,如何读数等?参考地(或电位)的含义等。

选好示波器,选好合适的探头,选择适当的衰减档位,连接示波器/探头/被测物,示波器开机,打开相应的通道,设置合适的触发条件,调节适当的采样率,适当的采样深度,适当的垂直分辨率,适当的偏执,直接运行就可以看到波形了啊。

说了这么多,会了么?

数字示波器使用方法

示波器如何使用

如何正确使用示波器,初学者必知

冰淇淋笑着流泪

2018-09-25 8762人看过

如何正确使用示波器呢?在开始选择示波器之初,你心中已大概有一价格范围。示波器的价格取决于多方面因素,包括带宽、采样率、通道数以及存储深度等。如果你只以价格为依据来购买,最终你有可能买不到你所需要的性能。所以如果仅考虑价格因素,安泰测试建议短期用可以考虑租用一台示波器,预算限制的话可以买一台二手示波器也是可以的。

方法

1、确定你需要模拟还是数字示波器?

数字示波器和模拟示波器各有其优缺点。现代技术的发展使数字正确选用示波器的十个步骤示波器功能更强,响应更快而且价格也逐渐降低。这些优势使得模拟示波器很难与先进的数字示波器相匹敌。目前来说,客户几乎都选择的是数字示波器,模拟示波器基本已经OUT了。

2、确定你对带宽的要求

测量交流波形的仪器通常都一频率上限,如果波形的频率在此之上则测量精度会变差。这频率上限就是仪器的带宽。通常用仪器响应降低3bB处的频率来定义,你所需仪器带宽的数值取决于被测信号的特征以及你希望得到的测量精度。示波器有两重类型的宽度,即重复(或模拟)带宽及实时带宽。很多数字示波器提供的模拟带宽比其基本采样率要高。这一点是可能的,如果一信号重复出现,示波器并不一定要在一次完成所有的采集,而可以通过在每—次触发发生时获取波形的一部分,在多次循环触发之后构成显示波形 。(这过程通常很快,以致你不会注意到它的发生),重复带宽指标独立于示波器的采样速率。事实上,这一指标通常用来衡量示波器模拟放大器部分的带宽。实时带宽适用于非重复或单次信号。示波器在一次触发过程中完成数字化,所以实时带宽取决于示波器的采样率,采样率与带宽之间的比值不是固定的。如果示波器有数字重构能力,这比值接近于4:1,如果没有重构,这比值通常是10:1。

3、确定你所需要的通道数

一般来讲,你所需要的通道数取决于被测对象。目前以双通道示波器最为流行。然而对大多数工程师来讲,对于某些应用,四通道示波器更为有用。

下面几点应该予以考虑:你需要在同一触发事件捕获多通道信号吗?如果是这样的话,请选用每个通道可以同时采样或独立A/D变换的示波器。如果你观测的信号是重复信号,那么就不一定要求同时采集了。某些示波器是2+2形式的,也就是说,其中两个通道是全功能的,而另外两个通道是衰减范围受 限制的辅助通道。在这种情况下,两个A/D变换器由四个通道共享。辅助通道在你观测数字信号时可以提供额外的灵活性。对于双通道示波器,外触发可能很有用处。它可以用一无需观测的信号作为外触发源,而不占用示波器的输入通道。如果你要进行数字定时测量,要求超过四个通道的示波器时,你不妨考虑使用逻辑分析仪。尽管此时你放弃了测量的垂直分辨率,但你获得了多个通道以及额外的触发及分析能力。

4、确定你所需要的采样速率

对于单次信号测量,最关键的性能指标是采样速率,即示波器对于输入信号进行“快速拍照”的速率。高采样速率可以产生高实时带宽以及高的实时分辨率。大多数示波器生产厂商采用采样速率与实时带宽为4:l(如果采用数字重构技术)或10:1(没有数字重构)的比例来防止出现假波。某些示波器提供了独立控制采样速率的功能,这样你可以同时调节采样速率和屏幕显示的数据量(时基),使二者设置不必互相牵制。这一特征可以使你保持你所希望的时间分辨率来观测波形。

5、确定你所需要的存储深度

你所需要的示波器存储深度取决于要求的总时间测量范围以及要求的时间分辨率。如果你想以高分辨率存储长时间段信号,那么你需要选择深存储示波器。这样,你可以在水平扫描速度低的情况下,采用高采样速率。由此将大大减少出现假波的机会,并且获得更多的波形细节信息。

6、考察评估触发能力

很多通用示波器用户习惯于采用边沿触发。在某些应用场合,如果示波器具有其它触发能力,你将会发现它对你的测量会很有帮助。先进的触发功能可以隔离出你所希望观测的事件。在数字应用领域,使示波器触发在多通道之间的特定模式对解决问题很有用处。此外,状态触发可以用来使模式触发与外时钟沿同步。毛刺触发在正或负毛刺发生的时刻或者一脉冲宽于或窄于设定的宽度。这些特征对故障查错尤其重要,触发在错误发生的时刻,观察前向事件(采用延时或水平位置旋钮)来确定问题产生的原因。如果需要

更高级的逻辑触发功 能,你仍然可以考虑采用逻辑分析仪。电视信号触发可以触发在场以及你需要观测的特定行上。在某些示波器上,该特征是选项功能。

7、评价毛刺捕捉能力

三个重要因素影响示波器的毛刺捕捉能力:更新速率:数字示波器必须首先捕获数据然后进行处理,最后进行显示。示波器在一秒钟内可以完成这三个过程的次数称为更新速率。更新速率快的示波器捕捉偶发毛刺的机会比较高。采用多处理器结构的示波器比传统的单处理器结构示波器具有更快的更新速率,使它更适用于捕捉偶发事件。多处理器结构可以产生与模拟示波器相近的显示吞吐能力和响应速度。

峰值检测能力:大多数数字示波器在低扫速时将丢掉采样点,从而降低了有效采样速率。由此引发了这样一个问题,在设定成快速时基时很容易观察到的窄脉冲在扫速低时消失了。然而对于峰值检测或毛刺检测这一特殊采样模式,在所有的扫描速度下均维持最大采样速率,把每一采样周期获得的最大和最小值记录下来。可以检测到的最小毛刺只与示波器的采样速率有关。

毛刺触发:具有毛刺触发功能的示波器可使你隔离出难以发现的毛刺并且触发在毛刺发生时刻。这一功能可以帮助你发现电路运行过程中发生异常情况的原因。

8、确定你所需要的分析功能

利用自动测量以及示波器内置的分析能力,你可以即容易又省时地完成工作。数字示波器通常具有模拟示波器不可能拥有的顺序测量功能和分析选件。算术运算功能包括有加、减、乘、除、积分和微分。统计测量(最小、最大和平均)可以定量描述测量的不确定性,这在测量噪声特征以及定时容限时是很有价值的。有些数字示波器还可以提供FFT功能。具有—卜述所有先进功能的示波器可能在价格上要高一些,所以你自己应该决定花费额外的钱是否物有所值。你最好还是根据实际应用来选择拥有这些特征的示波器。

9、评价存档能力

大多数数字示波器可以通过GPIB、RS-232或者并行口与PC,打印机或绘图仪相连接。但你应弄清楚可以提供哪一种接口,可与哪种类型打印机相匹配。从激光和喷墨打印机输出的效果比热打印输出的质量要高得多,这一点你应该心中有数。利用带有软盘驱动器或软件包的数字示波器,你可以方便地将波形的图像和波形数据传送至PC机。如果你想在一份报告中包含一幅捕捉到的屏幕图像或者想要把波形数据转换成表格,那么这些特征会节省时间。

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

示波器是一种用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。

基本构成

显示电路

显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。

(1)电子枪

电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。它主要由灯丝F、阴极K、控制极G、第一阳极A1、第二阳极A2组成。除灯丝外,其余电极的结构都为金属圆筒,且它们的轴心都保持在同一轴线上。阴极被加热后,可沿轴向发射电子;控制极相对阴极来说是负电位,改变电位可以改变通过控制极小孔的电子数目,也就是控制荧光屏上光点的亮度。为了提高屏上光点亮度,又不降低对电子束偏转的灵敏度,现代示波管中,在偏转系统和荧光屏之间还加上一个后加速电极A3。

第一阳极对阴极而言加有约几百伏的正电压。在第二阳极上加有一个比第一阳极更高的正电压。穿过控制极小孔的电子束,在第一阳极和第二阳极高电位的作用下,得到加速,向荧光屏方向作高速运动。由于电荷的同性相斥,电子束会逐渐散开。通过第一阳极、第二阳极之间电场的聚焦作用,使电子重新聚集起来并交汇于一点。适当控制第一阳极和第二阳极之间电位差的大小,便能使焦点刚好落在荧光屏上,显现一个光亮细小的圆点。改变第一阳极和第二阳极之间的电位差,可起调节光点聚焦的作用,这就是示波器的“聚焦”和“辅助聚焦”调节的原理。第三阳极是示波管锥体内部涂上一层石墨形成的,通常加有很高的电压,它有三个作用:①使穿过偏转系统以后的电子进一步加速,使电子有足够的能量去轰击荧光屏,以获得足够的亮度;②石墨层涂在整个锥体上,能起到屏蔽作用;③电子束轰击荧光屏会产生二次电子,处于高电位的A3可吸收这些电子。

(2)偏转系统

示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。当电子在偏转板之间运动时,如果偏转板上没有加电压,偏转板之间无电场,离开第二阳极后进入偏转系统的电子将沿轴向运动,射向屏幕的中心。如果偏转板上有电压,偏转板之间则有电场,进入偏转系统的电子会在偏转电场的作用下射向荧光屏的指定位置。

如果两块偏转板互相平行,并且它们的电位差等于零,那么通过偏转板空间的,具有速度υ的电子束就会沿着原方向(设为轴线方向)运动,并打在荧光屏的坐标原点上。如果两块偏转板之间存在着恒定的电位差,则偏转板间就形成一个电场,这个电场与电子的运动方向相垂直,于是电子就朝着电位比较高的偏转板偏转。这样,在两偏转板之间的空间,电子就沿着抛物线在这一点上做切线运动。最后,电子降落在荧光屏上的A点,这个A点距离荧光屏原点(0)有一段距离,这段距离称为偏转量,用y表示。偏转量y与偏转板上所加的电压Vy成正比。同理,在水平偏转板上加有直流电压时,也发生类似情况,只是光点在水平方向上偏转。

(3)荧光屏

荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随之改变,光点亮度也就改变。在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能力。

示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。

如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。

怎么使用示波器?

具体方法如下:

1、首先,拿出自己的示波器并且进行使用。

2、拿出仪器后连接好电源并且打开设备,点按示波器面板上面的menu按钮。

3、需要正确使用示波器,使用设备测试电路的时候首先切断高压电路的电源,然后再进行测试。

4、校准仪器,除正确设置示波器外,推荐定期自行校准一起,以准确地进行测量。

5、连接探头,现在我们准备把探头连接到示波器上,如果示波器匹配好,探头可以发货示波器的所有处理能力和性能,确保测量的信号的完整性。

6、接好信号以后,我们按一下面板上的“autoset”键,示波器会自动设置,方形波形就可以稳定。

示波器的使用方法(步骤)

一般来说都是1打开示波器。

2接上探头,探头接触到待测的信号。

3按auto,等待波形出来。或者手动调节时基。

具体使用方法要看你手上的示波器型号,厂家会配说明书。

亲,这边给您示波器的正确使用方法给您参考下:1.

检查示波器主机及其配件无缺漏和无损坏后,摁一下示波器左下角的开关按钮,将示波器打开。

2.

数字示波器使用方法