做高三数学选择题技巧蒙题方法
高考各科单选题答案都有一个共同的规律,既答案A、B、C、D的概率均为25%,所以不会的题蒙C只能做对四分之一的题。下面给大家分享一些关于做 高三数学 选择题技巧,希望对大家有所帮助。
高中数学选择题答题技巧_高中数学选择题解题技巧
一.做高三数学选择题技巧蒙题
数学蒙题技巧1
蒙题也是一门学问,本人高三学生,数学蒙题在70以上。首先,要明确一点,蒙题不能纯粹蒙,你看过题就要有看题的效果。看完题后不会做,就先看选项,有些就可以排除,然后根据题设条件进行分析,有可能又会排除一些选项,这样就容易多了。
若果一个也排除不了,那就琢磨选项,如果有关于课外的(课内很少出现的)答案就很有可能就是那个。如果选项是4个数,一般是第二大的是正确选项。单看选项,一般BD稍多,A较少。还有一点,选了之后就不要改了,除非你有90以上的把握。
数学蒙题技巧2
据我所知的有数学第一题一般不会是A;最后一题不会是A;选择题的答案分布均匀;填空题不会就填0或1;答案有根号的,不选;答案有1的,选;三个答案是正的时候,在正的中选;有一个是正X,一个是负X的时候,在这两个中选;题目看起来数字简单,那么答案选复杂的,反之亦然;上一题选什么,这一题选什么,连续有三个相同的则不;以上都不实用的时候选B。
在计算题中,要首先写一答字。如果选项是4个数,一般是第二大的是正确选项。单看选项,一般BD稍多,A较少。还有一点,选了之后就不要改了,除非你有90以上的把握。和图形有关的选择填空可以取特值。
大题不会做,看上问的结论能不能用,还不会就照条件把你能想到的结论推出来,一般都有分,运气好可以拿1大半。填空题仔细点,2分钟没思路就跳,不会做写个最可能的答案,对的几率也不很小。
二.做高三数学选择题技巧蒙题原则
数学蒙题技巧守则
1、答案有根号的,不选
2、答案有1的,选
3、三个答案是正的时候,在正的中选
4、有一个是正X,一个是负X的时候,在这两个中选
5、题目看起来数字简单,那么答案选复杂的,反之亦然
6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条
7、答题答得好,全靠眼睛瞟
8、以上都不实用的时候选B
数学从易到难复查
填空题:慎重再慎重在数学的主观题当中,填空题并不像后面的大题,要求给出具体的解题步骤,它只要求考生给出一个最后的答案。这就要求考生在答题时更加慎重,按部就班来进行解题。
大题:步骤需明确在大题(计算题和证明题)阅卷过程中,一般是过程分和结论分分开给的。因此考生在答题时还是应该将步骤写明确,这样不但能够获得步骤分,同时也利于自己后来的检查。否则就跟填空题一样,答案一错就没有分了。
自身:定位需理性近年来,高考当中出现了一些奇怪的现象,就是一些学生平时的表现还不错,但他们的卷面得分就是上不去。这主要是学生自身的定位出现了问题。因为这些考生将过多的时间花在了难题上,这样一来,在容易题上出错的概率就大大增加。其实,难题在考试当中所占的比例仅仅为20%。因此,考生在答题时不要有“一定要把难题啃下来”的非理性念头。只要老老实实把容易题的分数拿全,那么考试的分数就不会很低。
答题:大胆再大胆在不是很有把握的情况下,不要将原来的答案涂掉,可以将两种答题 方法 都写在考卷上。阅卷老师一般会按照得分高的那种方法给分的。
三.高考数学选择题蒙题窍门
数量原则
理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。答案排列:3、3、3、3、3
实际状态:每个选项在2——4的范围内。
选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。即某一个选项为2个,某一个选项为4个
三不相同原则
即连续三个问题不会连续出现相同答案
答案排列不会出现ABCDE的英文字母排列顺序
中庸之道
即数值优先选择“中间量”选项,选项优先考虑BCD。在同一道题中优先考虑数值的“中间量”后考虑选项BCD。(如E选项对应数值为中间量时,优先从数值入手考虑)
出现诸如“以上结果都不对”的选项不予考虑
由提干给定信息入手,通过选项特征排除错误选项
选项基本特征如下:
单值与多值(例如提干出现“偶次方、、对称性”等结果出现多值)
正值与负值(考前冲刺P12/25题根据提干排除负值)
有零与无零
区间的开与闭(看极端情况能否取等号)
正无穷与负无穷(通过极限考虑)
整数与小数(分数)
质数与合数
大于与小于
整除与不能整除
带符号与不带符号(例如根号、平方号等等)
少数服从多数原则
即看选项特征,具有同一特征多的选项优先考虑。
复杂表达式化简题
一般情况下选项出现1、2、0、-1、-2的情况比较多
前后无定位,连续几道题均不会都需猜蒙答案的情况
观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。
答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。
做高三数学选择题技巧蒙题方法相关 文章 :
★ 高考数学选择题蒙题方法归纳
★ 高考数学选择题蒙题方法归纳总结
★ 2020高考数学选择题蒙题技巧有哪些
★ 高考数学答题时间分配及数学选择题10大蒙题技巧
★ 2020年高考数学蒙题技巧
★ 做数学选择题的十种技巧
★ 高中数学选择题蒙题技巧2020
★ 高三数学重要知识点总结与蒙题技巧
★ 2020高考数学选择题蒙题技巧有哪些的
高考数学12题蒙题技巧 高中数学选择题秒杀法
高中数学是学习的重点,三年的数学知识对于学生来说掌握的难度很大,但是想要学好数学也并不难。下文我给大家整理了高中数学选择题的答题技巧,供参考!
数学12题选择题蒙题技巧方法 代入法
这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。b大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。但是如果是选择题,你可以取a=0.5,b=1.5试一试。还有就是可以把选项里的答案带到题目中的式子来计算。倒推法!
区间法
这类方法也称为排除法,在答高考考数学选择题是,靠着大概计算出的数据或者猜一些数据。比如一个题目里给了几个角度,30°,90°。很明显,答案里就肯定是90±30度,120加减30度。或者一些与30,60,90度有关的答案。
坐标法
如果做的一些高考数学图形题完全找不到思路,第一可以用比例法,第二可以用坐标法,不用管什么三角函数,直接找到两点坐标,直接带入高中函数求角度(cos公式)求垂直,求长度,相切相离公式。直接直捣黄龙,不用一点点找角度做什么麻烦的事。
比例法
高考数学选择题用比例法这个方法很简单也很无赖。如果遇到一个图形题,首先把已知的标上去,未知的用量角器量也要量出来,之后就是见证奇迹的时刻!!!尺子量出两条实线的比例关系,然后通过已知的一边,通过比例大概估算求得那个边长。
高考数学选择题秒杀法 1.特值检验法
对于具有一般性的高考数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则
将所要研究的高考数学问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决高考数学问题。
3.剔除法
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种高考数学选择题解题常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法
由高考数学题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法
通过高考数学题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
高考数学选择题秒杀技巧
目前的高中数学选择题倾向于单项选择,表面看来降低了不少难度,但是选项中的相近答案极易给学生以误导。通常来说,选择题的知识覆盖面较广,思维具有跳跃性,题目由浅到深,是检测学生观察、分析以及推理判断能力的有效手段。下面分享几个选择题答题技巧。
高考数学选择题秒杀技巧
1.特值法
通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误答案,选取正确选项。
2.估算法
当选项差距较大,且没有合适的解题思路时我们可以通过适当的放大或者缩小部分数据估算出答案的大概范围或者近似值,然后选取与估算值最接近的选项。
注意:带根号比较大小或者寻找近似值时要平方去比较这样可以减少误差。
3.逆代法
充分发挥选项的作用,观察选项特点,制定解题的特殊方案,可以大大的简化解题步骤,节省时间,做选择题我们切记不要不管选项。
4.特殊情况分析法
当题中没有限定情况时,我们考虑问题可以从最特殊的情况开始分析,特殊情况往往可以帮助我们排除部分选项,然后分析从特殊情况到一般情况的[过度](变大、变小)等选出正确答案。
高考数学选择题答题口诀:
1、小题不能大做
2、不要不管选项
3、能定性分析就不要定量计算
4、能特值法就不要常规计算
5、能间接解就不要直接解
6、能排除的先排除缩小选择范围
7、分析计算一半后直接选选项
8、三个相似选相似
高中数学选择题答题技巧
高中数学选择题答题技巧排除、推测、特殊值。
排除方法是根据问题和相关知识你就知道你肯定不选择这一项,因此只剩下正确的选项如果不能立即获得正确的选项,注意去除这种方式还是一种解答这种烦的好方式,也是解决选择问题的常用方法。
通过推测和测量,可以得到直接观测或结果,人们经常用这种方法来探索高考题中问题的规律性,这类问题的主要解决方法是采用不完整的归类方式通过实验、猜测、试错验证、总结、归纳等过程,使问题得以解决。
特殊值法对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。
高中调整心态也有技巧。
首先要正确认识得失成败,很多高中生的心态不好都是因为学习成绩,每位高中生在学习时都非常努力,但是有一部分高中生在考试时因为某些原因而导致成绩不好,所以这些高中生的心态也会有所改变。所以高中生调整心态就要做到“不以物喜,不以己悲”,不被成绩的好坏左右了自己的思想。
其次与同学和谐相处对同学友善,同学对你也回友善,你的心情就会好起来,学习效率就会变高,这是一个良性循环的过程。而且高中生和同学在一起学习时可以了解到自己所看不到的缺点。同学可以对自己起到一定帮助作用。
高中数学答题技巧有哪些?
高中数学答题技巧如下:
1、填写好全部考生信息,检查试卷有无问题。
2、调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定)。
3、对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。
得分技巧
1、圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时可以取特殊值法强行算出k。过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就可以了。
2、选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案。
数学选择题蒙题技巧有哪些
高考各科单选题答案都有一个共同的规律,既答案A、B、C、D的概率均为25%,所以不会的题蒙C只能做对四分之一的题。下面是我为你整理关于数学选择题蒙题技巧有哪些的内容,希望大家喜欢!
数学选择题蒙题技巧
1、答案有根号的,不选
2、答案有1的,选
3、三个答案是正的时候,在正的中选
4、有一个是正X,一个是负X的时候,在这两个中选
5、题目看起来数字简单,那么答案选复杂的,反之亦然
6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条
7、答题答得好,全靠眼睛瞟
8、以上都不实用的时候选B
数学选择题蒙题技巧:中庸之道
即数值优先选择“中间量”选项,选项优先考虑bcd。在同一道题中优先考虑数值的“中间量”后考虑选项bcd。(如e选项对应数值为中间量时,优先从数值入手考虑)出现诸如“以上结果都不对”的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:
单值与多值(例如提干出现“偶次方、、对称性”等结果出现多值)正值与负值(考前冲刺p12/25题根据提干排除负值)(3)有零与无零
区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)
整数与小数(分数)参见考前冲刺p13/28题质数与合数大于与小于整除与不能整除
带符号与不带符号(例如根号、平方号等等)
高考数学答题公式整理
一、高中数学公式全集:
常用的诱导公式有以下几组:
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于π/2k ±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
#各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
上述记忆口诀,一全正,二正弦,三内切,四余弦
#还有一种按照函数类型分象限定正负:
函数类型 第一象限 第二象限 第三象限 第四象限
正弦 ...........+............+............—............—........
余弦 ...........+............—............—............+........
正切 ...........+............—............+............—........
余切 ...........+............—............+............—........
同角三角函数基本关系
同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
高考最头疼的就是数学选择题,学霸有哪些攻略?
攻略就是的理解和计算能力。考试主要是检验学生的学习成果,没有投机取巧的成分,所以的攻略就是理解题目,然后通过计算得出结果。
11、12题可以暂时放一放,等把后面简单的大题解决完了有时间再去做。然后选择题采用排除法和代入法可以快速解决一部分的题目。
认真审清题意,熟悉数学公式并学会灵活运用,放松心态,高考没有想象中的。
高中数学选择题的答题方法和技巧
高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。下面整理了十个高考数学选择题必用答题技巧,供参考。
排除法
利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
特殊值检验法
对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。值得注意的是,特殊值法常常也与排除法同时使用。
极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
顺推破解法
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。如下题,根据题意,依次将点代入函数及其反函数即可。
逆推验证法
逆推验证法也称为代答案入题干验证法。
正难则反法
从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论,在做排列组合或者概率类的题目时,经常使用。
数形结合法
由题目条件,做出符合题意的图形或图像,借助图形或图像的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
递推归纳法
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法,例如分析周期数列等相关问题时,就常用递推归纳法。
特征分析法
对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法
估算法
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从而得出正确判断的方法。
以上方法要注意灵活运用,很多情况下都是需要穿插综合运用,不可拘泥于一法。另外,虽然本文选用的例题都是选择题,但是大部分方法在做填空题时,也是同样适用的,比如正难则反、数形结合、特征分析、递推归纳等,还是要灵活运用。