艾丽游戏ing

固态继电器型号有哪些,如何选择?

艾丽游戏ing 1

固态继电器型号有哪些,如何选择

固态继电器的选型方法:

固态继电器型号有哪些,如何选择?固态继电器型号有哪些,如何选择?


1. 在选用小电流规格印刷电路板使用的固态继电器时,因引线端子为高导热材料制成,焊接时应在温度小于250℃、时间小于10S的条件下进行,如考虑周围温度的原因,必要时可考虑降额使用,一般将负载电流控制在额定值的 1/2以内使用。

2. 各种负载浪涌特性对固态继电器SSR的选择

被控负载在接通瞬间会产生很大的浪涌电流,由于热量来不及散发,很可能使SSR内部可控硅损坏,所以用户在选用继电器时应对被控负载的浪涌特性进行分析,然后再选择继电器。使继电器在保证稳态工作前提下能够承受这个浪涌电流,选择时可参考表2各种负载时的降额系数(常温下)。

如所选用的继电器需在工作较频繁、寿命以及可靠性要求较高的场合工作时,则应在表2的基础上再乘以0.6以确保工作可靠。

一般在选用时遵循上述原则,在低电压要求信号失真小可选用采用场效应管作输出器件的直流固态继器;如对交流阻性负载和多数感性负载,可选用过零型继电器,这样可延长负载和继电器寿命,也可减小自身的射频干扰。如作为相位输出控制时,应选用随机型固态继电器。

3. 使用环境温度的影响

固态继电器的负载能力受环境温度和自身温升的影响较大,在安装使用过程中,应保证其有良好的散热条件,额定工作电流在10A以上的产品应配散热器,100A以上的产品应配散热器加风扇强冷 。在安装时应注意继电器底部与散热器的良好接触 ,并考虑涂适量导热硅脂以达到最佳散热效果。

如继电器长期工作在高温状态下(40℃——80℃)时,用户可根据厂家提供的输出电流与环境温度曲线数据,考虑降额使用来保证正常工作。

398号继电器原理?

398继电器有如下几种作用:

1、扩大控制范围:例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。

2、放大:例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。

3、综合信号:例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。

4、自动、监测:例如,自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。 继电器(英文名称:relay)是一种电控制器件,是当输入量(激励量)的变化达到规定要求时,在电气输出电路中使被控量发生预定的阶跃变化的一种电器。它具有控制系统(又称输入回路)和被控制系统(又称输出回路)之间的互动关系。通常应用于自动化的控制电路中,它实际上是用小电流去控制大电流运作的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 拓展资料: 继电器可靠性的影响因素: 1.环境对继电器可靠性的影响:继电器工作在GB和SF下的平均故障间隔时间,达到820000h,而在NU环境下,仅60000h。 2质量等级对继电器可靠性的影响:当选用A1质量等级的继电器时,平均故障间隔时间可达3660000h,而选用C等级的继电器平均故障间隔时间为110000,其间相差33倍,可见继电器的质量等级对其可靠性能的影响非常大。 3触点形式对继电器可靠性的影响:继电器的触点形式也会对其可靠性产生影响,单掷型继电器的可靠性都高于相同刀数的双掷型继电器,同时随刀数的增加可靠性逐渐降低,单刀单掷继电器的平均故障间隔时间是四刀双掷继电器的5.5倍 。 4结构类型对继电器可靠性的影响:继电器结构类型共有24种,不同类型均对其可靠性产生影响 。 5温度对继电器可靠性的影响:继电器工作温度范围在-25~70℃之间。随着温度的升高,继电器的平均故障间隔时间逐渐下降 。 6动作速率对继电器可靠性的影响:随着继电器动作速率的提高,平均故障间隔时间基本呈指数型下降趋势。因此,若设计的电路要求继电器的动作速率非常高,那么在电路维修时就需要仔细检测继电器以便及时对它更换 。 7电流比对继电器可靠性的影响:所谓电流比是继电器的工作负载电流与额定负载电流之比。电流比对继电器的可靠性影响很大,尤其当电流比大于0.1时,平均故障间隔时间迅速下降,而电流比小于0.1时,平均故障间隔时间基本不变,因此在电路设计时应选用额定电流较大的负载以降低电流比,这样可保证继电器乃至整个电路不因工作电流的波动而使可靠性降低。

常用的继电器型号有哪些?

继电器是一种小信号控制电器,它利用电流、电压、时间、速度、温度等信号来接通和分断小电流电路。广泛应用于电动机或线路的保护及各种生产机械的自动控制。由于继电器一般都不直接控制主电路,而是通过接触器和其他开关设备对主电路进行控制,因而继电器载流容量小,不需灭弧装置。继电器有体积小、重量轻、结构简单等优点,但对其动作的灵敏度和准确性要求较高。常用的有热继电器、中间继电器、速度继电器、时间继电器等。

(1)热继电器

热继电器是对电动机和其他用电设备进行过载保护的控制电器(图6-8)。

图6-8热继电器的外形和结构

(a)外形(b)结构

1.复位按钮2.调整整定电流装置3.动断触点4.动作机构5.热元件

热继电器的型号含义如下:

热继电器的动作原理如图6-9所示。热继电器的动断触点串联在被保护的二次电路中,它的热元件由电阻值不高的电阻丝绕制,靠近热元件的双金属片由两种热膨胀系数差异较大的金属薄片叠压在一起。热元件串联在电动机或其他用电设备的主电路中,如果电路或设备工作正常,通过热元件的电流未超过允许值,热继电器内的双金属片不会弯曲,热继电器处于正常状态使线路导通。一旦电路过载,有较大电流通过热元件,热元件烤热双金属片,双金属片上层膨胀系数小,下层膨胀系数大而向上弯曲,使扣板在弹簧力的作用下带动绝缘牵引板,分断接入控制电路中的动断触点,切断主电路,从而起到过载保护。热继电器动作后,一般不会立即自动复位,待电流恢复正常、双金属片复原后,按动复位按钮,才能使动断触点回到闭合状态。故点动电动机不宜采用热继电器做过载保护。

图6-9热继电器动作原理图

1.双金属片2.绝缘牵引板3.触点4.热元件5.弹簧轴6.复位按钮7.电流扣板

热继电器热元件的额定电流原则上按被保护电动机的额定电流选取,即热元件的额定电流应接近或略大于电动机的额定电流。对于星形接法的电动机及电源对称性较好的场合,可选用两相结构的热继电器;对于三角形接法的电动机或电源对称性不够好的场合,可选用三相结构或三相结构带断相保护的热继电器。

(2)中间继电器

中间继电器属于电磁继电器的一种,它通常用于控制各种电感线圈,使有关信号放大,也可将信号同时传送给几个元件,使它们配合起自动控制作用。

中间继电器的结构及工作原理与交流接触器很相似,也由电磁线圈、动铁芯、静铁芯、触点系统、反作用弹簧和复位弹簧组成。但是它的触点系统没有主辅之分,各对触头所允许通过的电流大小是相等的(图6-10)。

图6-10JZ7系列中间继电器

1.动合触点2.动断触点3.复位弹簧4.线圈5.反作用弹簧6.静铁芯7.短路环8.动铁芯

如果被控制电流在5A以下时,中间继电器可作为交流接触器使用,相当于一个小的交流接触器。中间继电器型号含义如下:

选用中间继电器时,应根据被控制电路电压等级,所需触点对数、种类和容量综合考虑。

(3)速度继电器

速度继电器又叫反接自动继电器,它的作用是对电动机实现反接制动控制。下面以JY1系列速度继电器为例分析其工作原理(图6-11)。

图6-11JY1速度继电器结构

(a)外形(b)结构1.可动支架2、7.转子3、8.定子4.端盖5.连接头6.电动机轴9.定子绕组10、18.胶木摆杆11、16、17.簧片(动触点)12.动断触点13、15.静触点14.动合触点

需要电动机制动时,被控制电动机带动速度继电器转子转动,该转子的旋转磁场在速度继电器定子绕组中感应出电动势和电流,通过左手定则判断出,此时定子受到与转子转动相同的电磁转矩的作用,使之与转子同方向转动,定子上固定有胶木摆杆,胶木摆杆亦随着定子转动,并推动簧片(端部有动触点)断开动断触点,接通动合触点。切断电动机正转电路接通电动机反转电路而完成反接制动。当电动机的转速低于100r/min时,胶木摆杆恢复原状,触点分断,以避免电动机反转。

速度继电器主要根据电动机额定转速来选择。

(4)时间继电器

时间继电器是利用电磁原理或机械动作原理实现触点延时闭合或断开的自动控制电器。它的种类很多,这里只介绍应用广泛、结构简单且延时范围大的空气阻尼式时间继电器。

空气阻尼式时间继电器又叫气囊式时间继电器,它是利用空气阻尼作用而达到动作延时的目的。主要有电磁系统、工作触点、气室和传动机构等组成(图6-12)。

图6-12JST系列时间继电器

(a)外形(b)结构1.线圈2.反作用弹簧3.衔铁4.铁芯5.弹簧片6.瞬时触点7.杠杆8.延时触点9.调节螺钉10.推板11.推杆12.宝塔弹簧

电磁系统由电磁线圈、静铁芯、衔铁、反作用弹簧和弹簧片组成;工作触点由两副瞬时触点和两副延时触点组成;气室由橡皮膜、活塞和壳体组成,气室上面有一颗调节螺母,可通过它调节气室进气速度的大小来调节延时的长短;传动机构由杠杆、推杆、推板和宝塔弹簧等组成。

空气阻尼式时间继电器的型号含义如下:

选用时间继电器,应根据被控制线路的实际要求选择不同延时方式的继电器,同时要使所选择的电磁线圈电压与被控制电路的电压等级相符。

常用的型号有Y13F Y13F-2 YA YAV YAF YAE YAL等型号,规格型号为YSA——SS--1 12 D -XX 表示的是特殊参数,线圈功耗,规格,触点组数,封装形式和基本型号!!!

选用继电器型号,要从两大方面考虑:

1. 负载

1.1 负载的类型和大小,例如:马达负载、灯载...以及这些负载的功率

通常纯电阻负载,可以选和负载功率同样大小切换功率的继电器,而马达负载要选3倍以上切换功率的继电器...

1.2 控制负载的方式,即你希望如何控制负载,平时接通,给个信号切断,或者相反?

2. 驱动线路

驱动线路可以驱动多大功率多大电压的继电器?通常继电器厂家有多种线圈电压可选的

电磁继电器比较常用的型号有T73继电器、T78继电器、T90继电器、T91继电器、T93继电器、32F继电器、4100继电器、4101继电器、23F继电器、115F继电器、14F继电器、23F继电器、T76继电器。

根据分类方法不同,常用的继电器有下列几类。

(1)按动作原理分有:电磁型、感应型、电动型、晶体管型继电器。

(2)按测量的参量分有:电流型、电压型、功率型、阻抗型等电量继电器,以及温度型、压力型等非电量缎电器。

(3)按功能分有:中间继电器、时间继电器和信号继电器 硬之城小型继电器等。

继电保护装置就是根据正常运行时和故障时,电网有关部分的参数物理量的变化来实现对电网的保护。例如:

(1)反应电流改变的继电保护有电流速断、定时过流、反时限过流及零序电流保护。

(2)反应电压改变的继电保护有低电压(或过电压)保护。

(3)反应电流及电流与电压问相角改变的,有方向过电流保护。

(4)反应电压与电流的变化值.即反应短路点到保护安装处阻抗(或距离)的,有距离保护。

(5)反应输入电流和输出电流之差的,有变压器差动保护等。

就是HH52P和HH54P的,电压有DC24V和AC220V

继电器详细资料大全

继电器(英文名称:relay)是一种电控制器件,是当输入量(激励量)的变化达到规定要求时,在电气输出电路中使被控量发生预定的阶跃变化的一种电器。它具有控制系统(又称输入回路)和被控制系统(又称输出回路)之间的互动关系。通常套用于自动化的控制电路中,它实际上是用小电流去控制大电流运作的一种“自动开关”。故在电路中起著自动调节、安全保护、转换电路等作用。

基本介绍 中文名 :继电器 英文名称 :relay 类型 :电控制器件 组成 :线圈和触点组 分类 :电磁继电器、固体继电器等 作用 :自动调节、转换电路等作用 元件符号,触点形式,主要作用,主要分类,主要元件,电磁继电器,固态继电器,磁簧继电器,光继电器,时间继电器,中间继电器,继电器的测试,可靠性, 元件符号 因为继电器是由线圈和触点组两部分组成的,所以继电器在电路图中的图形符号也包括两部分:一个长方框表示线圈;一组触点符号表示触点组合。当触点不多电路比较简单时,往往把触点组直接画线上圈框的一侧,这种画法叫集中表示法。 继电器(图1) 电符号和触点形式: 继电器线圈在电路中用一个长方框符号表示,如果继电器有两个线圈,就画两个并列的长方框。同时在长方框内或长方框旁标上继电器的文字元号“J”。继电器的触点有两种表示方法:一种是把它们直接画在长方框一侧,这种表示法较为直观。另一种是按照电路连线的需要,把各个触点分别画到各自的控制电路中,通常在同一继电器的触点与线圈旁分别标注上相同的文字元号,并将触点组编上号码,以示区别。 触点形式 继电器的触点有三种基本形式: 1、动合型(常开)(H型)线圈不通电时两触点是断开的,通电后,两个触点就闭合。以合字的拼音字头“H”表示。 2、动断型(常闭)(D型)线圈不通电时两触点是闭合的,通电后两个触点就断开。用断字的拼音字头“D”表示。 3、转换型(Z型)这是触点组型。这种触点组共有三个触点,即中间是动触点,上下各一个静触点。线圈不通电时,动触点和其中一个静触点断开和另一个闭合,线圈通电后,动触点就移动,使原来断开的成闭合,原来闭合的成断开状态,达到转换的目的。这样的触点组称为转换触点。用“转”字的拼音字头“z”表示。 主要作用 继电器是具有隔离功能的自动开关元件,广泛套用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。 继电器(图3) 继电器一般都有能反映一定输入变数(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。 作为控制元件,概括起来,继电器有如下几种作用: 1) 扩大控制范围: 例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。 2) 放大 :例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。 3) 综合信号 :例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。 4) 自动、遥控、监测 :例如,自动装置上的继电器与其他电器一起,可以组成程式控制线路,从而实现自动化运行。 主要分类 1.按继电器的工作原理或结构特征分类 1)电磁继电器:利用输入电路内电路在电磁铁铁芯与衔铁间产生的吸力作用而工作的一种电气继电器。 继电器(图4) 2)固体继电器:指电子元件履行其功能而无机械运动构件的,输入和输出隔离的一种继电器。 3)温度继电器:当外界温度达到给定值时而动作的继电器。 4)舌簧继电器:利用密封在管内,具有触电簧片和衔铁磁路双重作用的舌簧动作来开,闭或转换线路的继电器 5)时间继电器:当加上或除去输入信号时,输出部分需延时或限时到规定时间才闭合或断开其被控线路继电器。 6)高频继电器:用于切换高频,射频线路而具有最小损耗的继电器。 7)极化继电器:有极化磁场与控制电流通过控制线圈所产生的磁场综合作用而动作的继电器。继电器的动作方向取决于控制线圈中流过的的电流方向。 8)其他类型的继电器:如光继电器,声继电器,热继电器,仪表式继电器,霍尔效应继电器,差动继电器等。 2、按继电器的外形尺寸分类 1)微型继电器 2)超小型微型继电器 3)小型微型继电器 注:对于密封或封闭式继电器,外形尺寸为继电器本体三个相互垂直方向的尺寸,不包括安装件,引出端,压筋,压边,翻边和密封焊点的尺寸。 3、按继电器的负载分类 1)微功率继电器 2)弱功率继电器 3)中功率继电器 4)大功率继电器 4、按继电器的防护特征分类 1)密封继电器 2)封闭式继电器 3)敞开式继电器 5、按继电器按照动作原理可分类 1)电磁型 2)感应型 3)整流型 4)电子型 5)数字型等 6、按照反应的物理量可分类 1)电流继电器 2)电压继电器 3)功率方向继电器 4)阻抗继电器 5)频率继电器 6)气体(瓦斯)继电器 7、按照继电器在保护回路中所起的作用可分类 1)启动继电器 2)量度继电器 3)时间继电器 4)中间继电器 5)信号继电器 6)出口继电器 主要元件 电磁继电器 电磁继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要线上圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。继电器一般有两股电路,为低压控制电路和高压工作电路。 电磁继电器工作原理图 固态继电器 固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。 固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。 热敏干簧继电器 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑胶衬底及其他一些附属档案组成。热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。 磁簧继电器 磁簧继电器是以线圈产生磁场将磁簧管作动之继电器,为一种线圈感测装置。因此磁簧继电器之特征、小型尺寸、轻量、反应速度快、短跳动时间等特性。 当整块铁磁金属或者其它导磁物质与之靠近的时候,发生动作,开通或者闭合电路。由磁铁和干簧管组成。磁铁、干簧管固定在一个不导磁也不带有磁性的支架上。以磁铁的南北极的连线为轴线,这个轴线应该与干簧管的轴线重合或者基本重合。由远及近的调整磁铁与干簧管之间的距离,当干簧管刚好发生动作(对于常开的干簧管,变为闭合;对于常闭的干簧管,变为断开)时,将磁铁的位置固定下来。这时,当有整块导磁材料,例如铁板同时靠近磁铁和干簧管时,干簧管会再次发生动作,恢复到没有磁场作用时的状态;当该铁板离开时,干簧管即发生相反方向的动作。磁簧继电器结构坚固,触点为密封状态,耐用性高,可以作为机械设备的位置限制开关,也可以用以探测铁制门、窗等是否在指定位置。 光继电器 光继电器为AC/DC并用的半导体继电器,指发光器件和受光器件一体化的器件。输入侧和输出侧电气性绝缘,但信号可以通过光信号传输。 其特点为寿命为半性、微小电流驱动信号、高阻抗绝缘耐压、超小型、光传输、无接点…等。 主要套用于量测设备、通信设备、保全设备、医疗设备…等。 时间继电器 时间继电器是一种利用电磁原理或机械原理实现延时控制的控制电器。它的种类很多,有空气阻尼型、电动型和电子型等。 继电器(图2) 在交流电路中常采用空气阻尼型时间继电器,它是利用空气通过小孔节流的原理来获得延时动作的。它由电磁系统、延时机构和触点三部分组成。 时间继电器可分为通电延时型和断电延时型两种类型。 空气阻尼型时间继电器的延时范围大(有0.4~60s和0.4~180s两种) ,它结构简单,但准确度较低。 当线圈通电(电压规格有ac380v、ac220v或dc220v、dc24v等)时,衔铁及托板被铁心吸引而瞬时下移,使瞬时动作触点接通或断开。但是活塞杆和杠杆不能同时跟着衔铁一起下落,因为活塞杆的上端连着气室中的橡皮膜,当活塞杆在释放弹簧的作用下开始向下运动时,橡皮膜随之向下凹,上面空气室的空气变得稀薄而使活塞杆受到阻尼作用而缓慢下降。经过一定时间,活塞杆下降到一定位置,便通过杠杆推动延时触点动作,使动断触点断开,动合触点闭合。从线圈通电到延时触点完成动作,这段时间就是继电器的延时时间。延时时间的长短可以用螺钉调节空气室进气孔的大小来改变。 吸引线圈断电后,继电器依靠恢复弹簧的作用而复原。空气经出气孔被迅速排出。 中间继电器 中间继电器的特点: 继电器采用线圈电压较低的多个优质密封小型继电器组合而成,防潮、防尘、不断线,可靠性高,克服了电磁型中间继电器导线过细易断线的缺点;功耗小,温升低,不需外附大功率电阻,可任意安装及接线方便;继电器触点容量大,工作寿命长;继电器动作后有发光管指示,便于现场观察;延时只需用面板上的拨码开关整定,延时精度高,延时范围可在0.02-5.00S任意整定。 中间继电器样本图 中间继电器的用途: 中间继电器用于各种保护和自动控制线路中,以增加保护和控制回路的触点数量和触点容量。 中间继电器的分类: 低电流启动中间继电器 静态中间继电器 延时中间继电器 电磁型中间继电器 电梯用中间继电器 导轨式中间继电器 中间继电器原理

线圈通电,动铁芯在电磁力作用下动作吸合,带动动触点动作,使常闭触点分开,常开触点闭合;线圈断电,动铁芯在弹簧的作用下带动动触点复位,继电器的工作原理是当某一输入量(如电压、电流、温度、速度、压力等)达到预定数值时,使它动作,以改变控制电路的工作状态,从而实现既定的控制或保护的目的。在此过程中,继电器主要起了传递信号的作用 。 中间继电器的作用

一般的电路常分成主电路和控制电路两部分,继电器主要用于控制电路,接触器主要用于主电路;通过继电器可实现用一路控制信号控制另一路或几路信号的功能,完成启动、停止、联动等控制,主要控制对象是接触器;接触器的触头比较大,承载能力强,通过它来实现弱电到强电的控制,控制对象是电器。

1.代替小型接触器

中间继电器的触点具有一定的带负荷能力,当负载容量比较小时,可以用来替代小型接触器使用,比如电动卷闸门和一些小家电的控制。这样的优点是不仅可以起到控制的目的,而且可以节省空间,使电器的控制部分做得比较精致。

2.增加接点数量

这是中间继电器最常见的用法,例如,在电路控制系统中一个接触器的接点需要控制多个接触器或其他元件时而是线上路中增加一个中间继电器。

3.增加接点容量

我们知道,中间继电器的接点容量虽然不是很大,但也具有一定的带负载能力,同时其驱动所需要的电流又很小,因此可以用中间继电器来扩大接点容量。比如一般不能直接用感应开关、三极体的输出去控制负载比较大的电器元件。而是在控制线路中使用中间继电器,通过中间继电器来控制其他负载,达到扩大控制容量的目的。

4.转换接点类型

在工业控制线路中,常常会出现这样的情况,控制要求需要使用接触器的常闭接点才能达到控制目的,但是接触器本身所带的常闭接点已经用完,无法完成控制任务。这时可以将一个中间继电器与原来的接触器线圈并联,用中间继电器的常闭接点去控制相应的元件,转换一下接点类型,达到所需要的控制目的。

5.用作开关

在一些控制线路中,一些电器元件的通断常常使用中间继电器,用其接点的开闭来控制,例如如彩电或显示器中常见的自动消磁电路,三极体控制中间继电器的通断,从而达到控制消磁线圈通断的作用。

6.转换电压

7.消除电路中的干扰 功率方向继电器 当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛套用于电力保护、自动化、运动、遥控、测量和通信等装置中。 测试方法 1、测线圈电阻:可用表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。继电器线圈的阻值和它的工作电压及工作电流有非常密切的关系,通过线圈的阻值可以计算出它的使用电压及工作电流。 2、测触点电阻:用表的电阻档,测量常闭触点与动点电阻,其阻值应为0;而常开触点与动点的阻值就为无穷大。由此可以区别出那个是常闭触点,那个是常开触点。 3、测量吸合电压和吸合电流:找来可调稳压电源和电流表,给继电器输入一组电压,且在供电回路中串入电流表进行监测。慢慢调高电源电压,听到继电器吸合声时,记下该吸合电压和吸合电流。为求准确,可以试多几次而求平均值。测量释放电压和释放电流:也是像上述那样连线测试,当继电器发生吸合后,再逐渐降低供电电压,当听到继电器再次发生释放声音时,记下此时的电压和电流,亦可尝试多几次而取得平均的释放电压和释放电流。一般情况下,继电器的释放电压约在吸合电压的10~50%,如果释放电压太小(小于1/10的吸合电压)时则不能正常使用了,这样会对电路的稳定性造成威胁使工作不可靠。 常见类型 1、过电流继电器 过电流继电器,简称CO,是从电流超过其设定值而动作的继电器,可做系统线路及过载的保护用,最常用的是感应型过电流继电器,是利用电磁铁与铝或铜制的旋转盘相对,依靠电磁感应原理使旋转圆盘转动,以达到保护作用。 动作原理: 感应型过电流继电器是利用电流互感器二次侧电流,在继电器内产生磁场,以促使圆盘转动,但流过的电流必须大于电流标置板的电流值才能转动。 2、过电压继电器 过电压继电器,简称OV,它的主要用途在于当系统的异常电压上升至120%额定值以上时,过电压继电器动作而使断路器跳脱保护电力设备免遭损坏,感应式过电压继电器的构造及动作原理和过电流继电器相似,只有主线圈不同。 3、欠电压继电器 欠电压继电器,简称UV,其构造与过电压继电器相同,所不同的是内部触头及当外加电压时转盘会立即转动。 4、接地过电压继电器 接地过电压继电器,简称OVG,或称接地报警继电器简称GR,其构造与过电压继电器相同,使用与三相三线非接地系统,接于开口三角形接地的接地互感器上,用以检知零相电压。 5、接地过电流继电器 接地过电流继电器,简称GCR,是一种高压线路接地保护继电器。 主要用途: 1) 高电阻接地系统的接地过电流保护; 2)发电机定子绕组的接地保护; 3)分相发电机的层间短路保护; 4)接地变压器的过热保护。 6、 选择性接地继电器 选择性接地继电器,简称SG,又称方向性接地继电器,简称DG,使用于非接地系统作配电线路保护作用,架空线及电缆系统也能使用。 选择性接地继电器:由接地电压互感器检出零相序电流如遇线路接地时,选择性接地继电器能确实地表示故障线路而发生警报,并按照其需要选择故障线路将其断开,而继续向正常线路送电。 7、 缺相继电器 缺相继电器,简称OPR,或缺相保护继电器,简称PHR,在三相线路中,当电源端有一线断路而造成单相时,若未有立即将线路切断,将使电动机单相运转而烧毁。 8、比率差动继电器 比率差动继电器,简称RDR,被套用做变压器交流电动机,交流发电机的差动保护,以往使用过的过电流保护继电器,是外部故障所产生的异常电流流过保护设备时,若变压器,一、二次侧电流发生不平衡或对电流互感器特性发生不一致,在这些情况下,此现象会扩延数倍,而使继电器误动作。 选用条件 1、先了解必要的条件 1)控制电路的电源电压,能提供的电流; 2)被控制电路中的电压和电流; 3)被控电路需要几组、什么形式的触点。选用继电器时,一般控制电路的电源电压可作为选用的依据。控制电路应能给继电器提供足够的工作电流,否则继电器吸合是不稳定的。 2、查阅有关资料确定使用条件后,可查找相关资料,找出需要的继电器的型号和规格号。若手头已有继电器,可依据资料核对是否可以利用。最后考虑尺寸是否合适。 3、注意器具的容积。若是用于一般用电器,除考虑机箱容积外,小型继电器主要考虑电路板安装布局。对于小型电器,如玩具、遥控装置则应选用超小型继电器产品。 型号标志 一般国产继电器的型号命名由四部分组成:第一部分+第二部分+第三部分+第四部分。 继电器型号第一部分用字母表示继电器的主称类型。 JR——小功率继电器 JZ——中功率继电器 JQ——大功率继电器 JC——磁电式继电器 JU——热继电器或温度继电度 JT——特种继电器 JM——脉冲继电器 JS——时间继电器 JAG——干簧式继电器 继电器型号第二部分用字母表示继电器的形状特征。 W——微型 X——小型 C——超小型 继电器型号第三部分用数字表示产品序号。 用数字表示产品序号 继电器型号第四部分用字母表示防护特征。 F——封闭式 M——密封式 例如:JRX-13F(封闭式小功率小型继电器)。 JR——小功率继电器 X——小型 13——序号 选择方式 继电器的测试 继电器是智慧型预付费电能表中的关键器件,继电器的寿命在某种程度上决定了电表寿命,该器件性能好坏对智慧型预付费电能表运行至关重要。而国内、外继电器生产厂家众多,生产规模相差较大,技术水平相距悬殊,性能参数千差万别,因此,电能表生产厂家在继电器检测选型时必须有一套完善的检测装置,以保证电表质量。同时,电网也加强了智慧型电能表内继电器性能参数抽样检测,同样需要相应的检测设备,检验不同厂家生产的电表质量。然而,目前继电器检测设备不仅检测项目比较单一,检测过程不能实现自动化,检测数据需要人工处理和分析,检测结果具有各种随机性、人为性,而且,检测效率低,安全性也得不到保证。 近两年来,电网逐步规范了电表技术要求,制定相关行业标准以及技术规范,这为继电器参数检测提出了一些技术难题,如继电器的负载通断能力、开关特性测试等。因此,迫切需要研究一种设备,实现继电器性能参数的综合检测。 根据继电器性能参数测试要求,测试项目可以分为两大类,一是不带负载电流的测试项目,如动作值、触点接触电阻、机械寿命;二是带负载电流的测试项目,如触点接触电压、电寿命、过负荷能力。 主要测试项目简单介绍如下:(1)动作值。继电器动作时所需电压值。(2)触点接触电阻。触电闭合时,两触头之间的电阻值。(3)机械寿命。机械部分在不损坏的情况下,继电器反复开关动作次数。(4)触点接触电压。触电闭合时,触电回路中施加一定负载电流,触点间电压值。(5)电寿命。继电器驱动线圈两端施加额定电压,触点回路中施加额定阻性负载时,每小时循环小于300次、占空比1∶4条件下,继电器的可靠动作次数。(6)过负荷能力。继电器驱动线圈两端施加额定电压,触点回路中施加1.5倍额定负载时,动作频率(10±1)次/分条件下,继电器可靠动作次数。 可靠性 继电器可靠性的影响因素 1.环境对继电器可靠性的影响:继电器工作在GB和SF下的平均故障间隔时间,达到820000h,而在NU环境下,仅60000h。 2质量等级对继电器可靠性的影响:当选用A1质量等级的继电器时,平均故障间隔时间可达3660000h,而选用C等级的继电器平均故障间隔时间为110000,其间相差33倍,可见继电器的质量等级对其可靠性能的影响非常大。 3触点形式对继电器可靠性的影响:继电器的触点形式也会对其可靠性产生影响,单掷型继电器的可靠性都高于相同刀数的双掷型继电器,同时随刀数的增加可靠性逐渐降低,单刀单掷继电器的平均故障间隔时间是四刀双掷继电器的5.5倍。 4结构类型对继电器可靠性的影响:继电器结构类型共有24种,不同类型均对其可靠性产生影响。 5温度对继电器可靠性的影响:继电器工作温度范围在-25~70℃之间。随着温度的升高,继电器的平均故障间隔时间逐渐下降。 6动作速率对继电器可靠性的影响:随着继电器动作速率的提高,平均故障间隔时间基本呈指数型下降趋势。因此,若设计的电路要求继电器的动作速率非常高,那么在电路维修时就需要仔细检测继电器以便及时对它更换。 7电流比对继电器可靠性的影响:所谓电流比是继电器的工作负载电流与额定负载电流之比。电流比对继电器的可靠性影响很大,尤其当电流比大于0.1时,平均故障间隔时间迅速下降,而电流比小于0.1时,平均故障间隔时间基本不变,因此在电路设计时应选用额定电流较大的负载以降低电流比,这样可保证继电器乃至整个电路不因工作电流的波动而使可靠性降低。

压力锅电路板里的继电器怎么看型号? 上面写着“10A 120V , 12A 120V 。。。”什么的。

上面数字应该为继电器 触点额定电压时,250V和120V 的正常电流。分为AC交流 和DC直流 两种 ,继电器线圈电压,有DC24V、AC220v比较常见,即继电器控制电压。

这个数字是参数,也就是对电压或是电流的要求,不是继电器的型号,如果可以的话,你把继电器的标签或是外观发图让大家判断~~