艾丽游戏ing

表面增强拉曼,为什么能大大提高灵敏度?

艾丽游戏ing 1

表面增强拉曼光谱的表面增强拉曼光谱信息处理与识别

拉曼光谱分析包括定性分析和定量分析,SERS光谱处理与识别包含光谱预处理、特征提取、特征分类(定性分析)、数学建模(定量分析)。由于痕量检测中拉曼光谱信噪比低、微弱信号被荧光背景淹没 、复杂体系中其它未知组分的干扰等因素的影响,SERS信号自动识别存在很大的挑战。另外,由于拉曼增强效应的稳定性影响,利用SERS进行定量分析具有很大的挑战性,然而,借助于化学计量学方法,SERS用于定量分析和模式识别己有较多的。

表面增强拉曼,为什么能大大提高灵敏度?表面增强拉曼,为什么能大大提高灵敏度?


表面增强拉曼,为什么能大大提高灵敏度?


表面增强拉曼的介绍

表面增强拉曼(Suce-Enhanced Raman Scattering,简称SERS),用通常的拉曼光谱法测定吸附在胶质金属颗粒如银、金或铜表面的样品,或吸附在这些金属片的粗糙表面上的样品。尽管原因尚不明朗,人们发现被吸附的样品其拉曼光谱的强度可提高10^3-10^6倍。主要用于吸附物种的状态解析等

表面增强拉曼为什么能大大提高灵敏度

首先拉曼谱仪激光器面种785nm种紫外、见近波范围内激光器都用作拉曼光谱析激发光源典型激光器(限于):紫外:244 nm257 nm325 nm364 nm见:457 nm488 nm514 nm 532 nm633 nm660 nm近:785 nm830 nm980 nm1064 nm通说激发光波选择般避荧光干扰,拉曼位移与激发光频率关.同物质产荧光范围同,要能避该物质荧光带激发光都.激光波选择于实验结其些重要影响: 灵敏度:拉曼散射强度与激光波四反比蓝/绿见激光散射强度比近激光要强15倍空间辨率:衍射极限条件激光光斑直径根据公式计算其激发激光波所使用显微物镜数值孔径例采用数值孔径0.9物镜波532 nm激光光斑直径理论0.72微米同条件使用785 nm波激光激光光斑直径理论值1.1微米终空间辨率定程度取决于激发激光选择基于品特性激发波进行优化:例:蓝/绿色激光适合机材料共振拉曼实验(碳纳米管其碳材料)及表面增强拉曼实验(SERS);红色近激光(660-830 nm)适合于抑制品荧光;紫外激光适合物(蛋白质、DNA、RNA等)共振拉曼实验及抑制品荧光

表面增强拉曼光谱的表面增强拉曼光谱技术应用

近些年,随着激光技术、纳米科技和计算机技术的迅猛发展,SERS已经在界面和表面科学、材料分析、生物、医学、食品安全、环境监测和安全等领域得到了广泛应用。SERS技术不但具有拉曼光谱的大部分优点,能够提供更丰富的化学分子的结构信息,可实现实时、原位探测,而且灵敏度高,数据处理简单,准确率高,是非常强有力的痕量检测工具 。

请教关于表面增强拉曼散射的问题, 谢谢!?

表面增强拉曼散射(Suce-enhanced Raman Scattering,SERS)主要是纳米尺度的粗糙表面或颗粒体系所具有的异常光学增强现象,它可以将吸附在材料表面的分子的拉曼信号放大约106 倍,对于特殊的纳米量级粒子形态分布的基底表面,信号的增强甚至可以高达1014 倍,因此在探测器的应用和单分子检测方面有着巨大的发展潜力。表面增强拉曼散射(SERS): 这是使分子或晶体歌唱声音更强大的另一种方法,换句话说也是检测极少量物质的一种方法,目前人们已开始用这一方法检测单个分子了。1974年,Fleishmann等人发现,对光滑银电极表面进行粗糙化处理后,首次获得吸附在银电极表面上单分子层吡啶分子的高质量的拉曼光谱。随后Van Duyne及其合作者通过系统的实验和计算发现吸附在粗糙银表面上的每个吡啶分子的拉曼散射信号与溶液相中的吡啶的拉曼散射信号相比,增强约6个数量级(即10倍),指出这是一种与粗糙表面相关的表面增强效应,被称为SERS效应 。这一结果立即在物理、化学、表面界面等研究领域中引起轰动,是什么原因引起这么大的散射增强?那些金属和那些分子可以产生这一效应?这个效应在表面探测、催化、电化学等研究中会有那些应用?这一系列问题立即成了人们研究的热门对象。经过20多年的研究后,人们知道目前除了电极表面之外,人们还在超高真空系统中蒸镀的金属表面上、金属胶体颗粒表面以及普通金属板经过适当的处理后表面上都进行了SERS实验。这些实验不仅为研究SERS机制提供了更多的信息,也为SERS应用提供了更多的可能。关于SERS的机制,经过研究,人们提出了十几种理论模型,目前较普遍的观点是SERS活性的表面往往能产生被增强的局域电场,是金属表面等离子共振振荡引起的,这被称为物理增强。而分子在金属上的吸附常伴随着电荷的转移引起分子能级的变化,或者分子吸附在特别的金属表面结构点上也导致增强,这两种情况均被称为化学增强。 查看原帖>>

表面增强拉曼的效应

表面增强拉曼散射( SERS) 效应是指在特殊制备的一些金属良导体表面或溶胶中,在激发区域内,由于样品表面或近表面的电磁场的增强导致吸附分子的拉曼散射信号比普通拉曼散射(NRS) 信号大大增强的现象。

表面增强拉曼光谱的背景

拉曼散射效应非常弱,其散射光强度约为入射光强度的10-6~10-9,极大地限制了拉曼光谱的应用和发展 。1974年Fldshmann等人发现吸附在粗糙金银表面的tt旋分子的拉曼信号强度得到很大程度的提高,同时信号强度随着电极所加电位的变化而变化。1977 年,Jeanmaire 与 Van Duyne , Albrecht 与 Creighton等人经过系统的实验研究和理论计算,将这种与银、金、铜等粗糙表面相关的增强效应称为表面增强拉曼散射(Suce enhanced Raman Scattering, SERS)效应,对应的光谱称为表面增强拉曼光谱。随后,人们在其它粗糖表面也观察到SERS现象。SERS技术迅速发展,在分析科学、表面科学以及生物科学等领域得到广泛应用,成长为一种非常强大的分析工具。

表面增强拉曼光谱的介绍

拉曼光谱和光谱一样同属于分子振动光谱,可以反映分子的特征结构。但是拉曼散射效应是个非常弱的过程,一般其光强仅约为入射光强的

10^-10。所以拉曼信号都很弱,要对表面吸附物种进行拉曼光谱研究几乎都要利用某种增强效应。Fleischmann

等人于

1974

年对光滑银电极表面进行粗糙化处理后,首次获得吸附在银电极表面上单分子层吡啶分子的高质量的拉曼光谱

。随后Van

Duyne

及其合作者通过系统的实验和计算发现吸附在粗糙银表面上的每个吡啶分子的拉曼散射信号与溶液相中的吡啶的拉曼散射信号相比,增强约6

个数量级,指出这是一种与粗糙表面相关的表面增强效应,被称为表面增强拉曼光谱(Suce-enhanced

Raman

spectroscopy,SERS)

效应。