艾丽游戏ing

数据分析的六个环节(数据分析的五个基本步骤)

艾丽游戏ing 1

【导读】随着大数据,人工智能化的普及,a帮助我们解决了很多问题,其主要表现在大数据分析上,那么数据分析包含哪几个步骤,主要内容是什么呢?为了帮助大家更好的了解数据分析过程,下面是小编整理的数据分析过程主要有下面6个步骤,一起来看看吧!

数据分析的六个环节(数据分析的五个基本步骤)数据分析的六个环节(数据分析的五个基本步骤)


1、明确目的:确定分析需要解决的业务问题,最好能将业务问题转化成数学问题。

2、数据收集:基于对业务问题的理解,通过各种方法和渠道收集能支撑业务分析的数据源,不仅限于数据库,也可以考虑一些各种部门的公开数据,比如统计局、大数据局等部门。

3、数据处理:通过技术手段,对收集的数据进行提取、清洗、转化和计算,异常值处理、衍生字段、数据转换等具体步骤。

4、数据分析:这里主要有两个技术手段,统计分析和数据挖掘,找到相关的数据关系和规则,然后利用业务知识来解读分析结果。在这里有一点需要说明,分析技术是为业务服务的,如果你的结果不能有助于业务问题的解决,统计分析和数据挖掘技术再好再高明,也没有意义,这点是我们做数据分析的人要谨记的。

5、数据展示:分析数据的可视化,在整个数据分析过程中也比较重要,这个步骤是将你前面做的工作量尽可能的展示给大家,具体的可视化技术,可以百度看下,是一个非常专业的学科。

6、报告撰写:展示你整个分析过程中的价值部分,在这里需要结构清晰地展示你整个分析过程,包括你的分析结果和依据,以及你结合业务知识提出的解决方案,最终解决你第一步的业务问题。然后基于报告将分析过程进行落地,为企业产生价值。

以上就是小编为大家整理发布的关于“数据分析包含哪几个步骤,主要内容是什么?”,希望对大家有所帮助。更多相关内容,关注小编,持续更新。

【数据分析】Excel数据分析全流程

作为数据分析师, 清晰了解数据分析的步骤是非常重要的,有助于清楚把控整个数据分析的流程。

作为想要学习数据分析的人员,了解整个数据分析的流程, 这样在面对一个数据分析问题的时候,知道如何去开展。

那么数据分析流程包含哪些环节呢?

我将一次完整的数据分析流程主要分为六个环节,包括明确 分析目的、数据获取、数据处理、数据分析、数据可视化、总结与建议 。

做任何事情都有其对应的目的,数据分析也是如此。每一次分析前,都必须要先明确做这次分析的目的是什么,只有先明确了目的,后面的分析才能围绕其展开, 常见的数据分析目标包括以下三种类型:

指标波动型 : 主要是针对某个指标下降了,上涨或者异常所做的分析, 比如DAU(日活跃用户数)降低了, 留存率降低了, 电商平台的订单数量减少了, 收入降低了,质量指标如卡顿率上涨的,分析的主要目的是挖掘指标波动的原因, 及时发现业务的问题。

评估决策型 :主要是针对某个活动上线, 某个功能上线, 某个策略上线的效果评估以及下一步迭代方向的建议,这些建议是指导产品经理或者其他业务方决策的依据。

专题探索型 : 主要是针对业务发起的一些专题的分析, 比如增长类的专题分析, 怎么提高用户新增,活跃,留存,付费, 比如体验类的专题分析, 如何提高用户查找表情的效率, 比如方向性的探索, 微信引入视频号的功能的用户需求分析以及潜在机会分析。

明确了数据分析目的之后, 第二步就是根据我们的分析目的,提取相对应的数据,通常这一个环节是利用 hive sql 从数据仓库中提取数据。

提取的数据通常要注意提取的维度和对应的指标个数,以电商app 的付费流失严重分析案例,我们需要提取的维度和指标可以根据具体的业务流程来(如图):

首先从维度上,我们需要确定好,比如时间维度我们提取的时间跨度是多长,比如今天的数据和昨天的对比,那就是取2天的数据,如果是这周和上周那就是十四天的数据。

设备维度的值是否需要提取ios和安卓的用户进行不同的平台的对比,分析付费流失严重是否主要发生在某个平台。

年龄、性别、地域维度,就是提取用户这些维度的信息, 主要是为了在哪一个年龄层, 哪一个性别,哪一个地域流失最严重。

新老用户的维度, 主要是从新旧维度上分析流失严重是否是集中在新用户还是老用户(如图所示)

确定好了维度以后, 接下来就是指标信息, 维度+ 指标才是一个完整的数据 。

因为需要分析每一个环节的流失情况,所以需要提取下单的每一个环节对应的指标的人数和次数。

基于这些人数和次数,我们可以计算每一个环节之间的转化率。

活跃浏览比 = 浏览的人数/活跃的人数

浏览添加比 = 添加的人数/浏览的人数

添加下单比 = 点击下单人数/添加购物车人数

成功下单率 = 成功下单的人数/点击下单的人数

当我们知道我们应该从哪里获取数据, 以及获取哪些指标数据后,为了保证我们提取的数据的质量,我们通常要对数据进行处理。

常见的数据处理有异常值处理,空值处理。举个例子, 比如我们在提取用户的年龄数据之前,我们需要去除掉年龄中的空的数据以及异常的数据, 异常的数据指得是比如年龄超过120岁这种。

数据处理好了之后,就可以开始分析,根据我们的分析目标,我们要选择合适的分析方法和分析思路去做拆解和挖掘。

常见的分析方法包括:漏斗分析, 相关性分析, 5w2h 分析, aha 时刻分析, 麦肯锡逻辑树分析法,用户画像分析,RFM用户分群,对比分析等方法,这些方法详细的介绍会在第三章展开, 在这里不做赘述

针对我们的订单流失的问题,典型的分析思路和方法是利用漏斗分析和用户画像分析。

漏斗分析主要是可以挖掘付费流失严重的主要流失环节是在哪里。我们发现付费流失严重主要是因为用户活跃到浏览商品的转化率从50%跌倒30%, 减少了20%,那就可以把问题定位到为什么用户浏览变少的问题上。

用户画像分析,可以帮助我们分析流失严重的用户是什么特征,比如什么样的年龄, 性别, 地域等, 那就可以知道这种流失是集中在哪一个年龄群体,哪一个地域群体以及其他的行为特征。

通过数据分析得出结论后,还需要用图表展示出来,俗话说得好,“文不如表,表不如图",用图表可以更清晰展现你的结论,通常的可视化我们可以利用excel 自带的可视化的功能, 也可以通过python或者R脚本进行可视化。

常见的图表有: 柱形图,折线图,饼图,条形图,面积图, 散点图,组合图,箱线图

当我们利用图表把我们的数据分析结论展示出来以后,最后就是数据分析的总结的部分,主要分成我们得出了什么具体的结论以及给业务具体的建议,告诉他们改进的方向。

这就是一次完整的数据分析的流程,从分析目的到提取数据,到分析数据给出结论的完整的过程。

数据分析工作流程:

明确目标——明确分析目的,例如:数据对象、商业目的、解决什么业务等

数据采集——数据收集,即确定数据范围,获取目标数据,整合相关数据等

数据处理——数据处理包含处理缺失数据,清洗不一致数据,关联和汇总数据等

数据分析——明确分析,基本数据分析、数据探索、复杂数据分析等

数据展现——数据展现包含数据组合信息、整合信息和观点、图表展现信息等

报告撰写——图文并茂、层次清晰,有明确的结论,提出建议和方案

1、业务理解

最初的阶段集中在理解项目目标和从业务的角度理解需求,同时将这个只是转化为数据挖掘问题的定义和完成目标的初步计划。

2、数据理解